1.
CRISPR/Cas9-based Genome Editing in Pseudomonas aeruginosa and Cyt..
[1344]
|
2.
CRISPR-Cas9 and CRISPR-Assisted Cytidine Deaminase Enable Precise ..
[1286]
|
3.
Highly efficient base editing in Staphylococcus aureus using an en..
[1264]
|
4.
EasyCatch, a convenient, sensitive and specific CRISPR detection s..
[1037]
|
5.
A Highly Efficient CRISPR-Cas9-Based Genome Engineering Platform i..
[960]
|
6.
Enhancement of prime editing via xrRNA motif-joined pegRNA
[902]
|
7.
Emergence of plasmid-mediated high-level tigecycline resistance ge..
[846]
|
8.
Anti-infective therapy using species-specific activators of Staphy..
[765]
|
9.
Thymine DNA glycosylase recognizes the geometry alteration of mino..
[672]
|
10.
Live-cell RNA imaging using the CRISPR-dCas13 system with modified..
[660]
|
11.
一种CRISPR//Cas12f的检测体系及其应用
[634]
|
12.
Programmable adenine deamination in bacteria using a Cas9-adenine-..
[594]
|
13.
Application of CRISPR/Cas9-Based Genome Editing in Studying the Me..
[575]
|
14.
Enhancing prime editing efficiency by modified pegRNA with RNA G-q..
[557]
|
15.
A Potent Anti-SpuE Antibody Allosterically Inhibits Type III Secre..
[536]
|
16.
A novel copper-sensing two-component system for inducing Dsb gene ..
[532]
|
17.
Crystal structure and acetylation of BioQ suggests a novel regulat..
[530]
|
18.
BacPE: a versatile prime-editing platform in bacteria by inhibitin..
[507]
|
19.
Catalytic-state structure and engineering of Streptococcus thermop..
[498]
|
20.
Rapid and Efficient Genome Editing in Staphylococcus aureus by Usi..
[497]
|
21.
Mapping the Complete Photocycle that Powers a Large Stokes Shift R..
[482]
|
22.
一种基因组编辑系统及方法
[477]
|
23.
Mechanistic insights into staphylopine-mediated metal acquisition
[448]
|
24.
Development of a versatile nuclease prime editor with upgraded pre..
[430]
|
25.
CRISPR-CBEI: a Designing and Analyzing Tool Kit for Cytosine Base ..
[424]
|
26.
PAM-Expanded Streptococcus thermophilus Cas9 C-to-T and C-to-G Bas..
[420]
|
27.
CRISPR-AsCas12f1 couples out-of-protospacer DNA unwinding with exo..
[412]
|
28.
Molecular basis and engineering of miniature Cas12f with C-rich PA..
[395]
|
29.
Cas12n nucleases, early evolutionary intermediates of type V CRISP..
[392]
|
30.
Molecular Basis and Genome Editing Applications of a Compact Eu..
[391]
|
31.
一种细菌基因定点转座与突变文库构建的方法及其应用
[365]
|
32.
Strategies for Developing CRISPR-Based Gene Editing Methods in Bac..
[353]
|
33.
Guide RNA engineering enables efficient CRISPR editing with a mini..
[349]
|
34.
基因组编辑系统和方法
[322]
|
35.
Structure and engineering of miniature Acidibacillus sulfuroxidans..
[321]
|
36.
Molecular basis for cell-wall recycling regulation by transcriptio..
[319]
|
37.
CRISPR/Cpf1-Mediated Multiplex and Large-Fragment Gene Editing in ..
[310]
|
38.
一种优化的CRISPR/SpCas12f1系统、工程化向导RNA及其应用
[309]
|
39.
一种工程化向导RNA、CRISPR//CnCas12f1系统及其应用
[304]
|
40.
基于C2C9核酸酶的新型基因组编辑系统及其应用
[302]
|
41.
一种基于C2C9核酸酶的新型基因组编辑系统及其应用
[299]
|
42.
Programmed genome editing by a miniature CRISPR-Cas12f nuclease
[298]
|
43.
GENOME EDITING SYSTEM AND METHOD
[298]
|
44.
Molecular basis for the PAM expansion and fidelity enhancement of ..
[297]
|
45.
Structural Basis of Staphylococcus aureus Surface Protein SdrC
[295]
|
46.
Compact RNA editors with natural miniature Cas13j nucleases
[286]
|
47.
基因组编辑系统和方法
[285]
|
48.
Capsule type defines the capability of Klebsiella pneumoniae in ev..
[283]
|
49.
一种优化的向导RNA、CRISPR//AcC2C9基因编辑系统及基因编辑方法
[278]
|
50.
Targeted genetic screening in bacteria with a Cas12k-guided transp..
[275]
|
51.
Characterization and Engineering of a Novel Miniature Eubacteri..
[263]
|
52.
PAM-expanded Streptococcus thermophilus Cas9 C-to..
[261]
|
53.
一种碱基编辑系统及碱基编辑方法
[261]
|
54.
一种pnCasSA-BEC质粒及其应用
[260]
|
55.
一种优化的CRISPR//SpCas12f1系统、工程化向导RNA及其应用
[258]
|
56.
铜绿假单胞菌中基于CRISPR/Cas9系统的基因组编辑与假单胞菌中胞苷脱氨..
[254]
|
57.
基于C2C9核酸酶的新型基因组编辑系统及其应用
[254]
|
58.
VirBR, a transcription regulator, promotes IncX3 plasmid transmiss..
[254]
|
59.
Virulence-related regulatory network of Pseudomonas syringae
[252]
|
60.
核酸修饰与编辑的化学生物学前沿专辑
[248]
|
61.
一种基于C2C9核酸酶的新型基因组编辑系统及其用途
[248]
|
62.
一种核酸酶和包含其的基因编辑系统及用途
[248]
|
63.
一种先导编辑系统及其应用
[246]
|
64.
一种工程优化的核酸酶、向导RNA、编辑系统和应用
[234]
|
65.
一种pnCasPA-BEC质粒及其应用
[233]
|
66.
一种基于C2C9核酸酶的新型基因组编辑系统及其应用
[233]
|
67.
一种工程优化的核酸酶、向导RNA、编辑系统和应用
[233]
|
68.
双质粒系统及其应用
[227]
|
69.
一种碱基编辑系统及碱基编辑方法
[227]
|
70.
一种优化的CRISPR//SpCas12f1系统、工程化向导RNA及其应用
[224]
|
71.
一种优化的向导RNA、CRISPR//AcC2C9基因编辑系统及基因编辑方法
[224]
|
72.
一种pCasPA//pACRISPR双质粒系统及其应用
[221]
|
73.
一种pCasSA质粒及其应用
[213]
|
74.
Genome engineering of human pathogens using CRISPR technology
[200]
|
75.
C2C9核酸酶在制备基因检测产品中的用途和方法
[191]
|
76.
Miniature CRISPR-Cas12 Systems: Mechanisms, Engineering, and Genom..
[180]
|
77.
基于CRISPR-Cas9的鲍曼不动杆菌基因组工程平台研究OxyR的活性氧感应机..
[179]
|
78.
CRISPR/Cas9-mediated genome editing in Staphylococcus aureus
[169]
|
79.
人类病原菌过渡金属转运新机制
[165]
|
80.
一种用于肺炎克雷伯菌基因编辑的表达载体
[157]
|
81.
人类病原菌中新型基因组编辑技术的构筑和应用
[152]
|
82.
一种用于鲍曼不动杆菌胞嘧啶碱基编辑质粒及其应用
[139]
|
83.
一种用于肺炎克雷伯菌基因编辑的双质粒系统
[138]
|
84.
基于C2C9核酸酶的新型基因组编辑系统及其应用
[133]
|
85.
Systematic trans-Activity Comparison of Several Reported Cas12f Nu..
[48]
|
86.
AI-driven discovery of host thioredoxin as a CRISPR enhancer of ph..
[39]
|
87.
Systematic trans-Activity Comparison of Several Reported Ca..
[38]
|