消息
×
loading..
FastGrasp: Efficient Grasp Synthesis with Diffusion
2024-11-22
状态已发表
摘要Effectively modeling the interaction between human hands and objects is challenging due to the complex physical constraints and the requirement for high generation efficiency in applications. Prior approaches often employ computationally intensive two-stage approaches, which first generate an intermediate representation, such as contact maps, followed by an iterative optimization procedure that updates hand meshes to capture the hand-object relation. However, due to the high computation complexity during the optimization stage, such strategies often suffer from low efficiency in inference. To address this limitation, this work introduces a novel diffusion-model-based approach that generates the grasping pose in a one-stage manner. This allows us to significantly improve generation speed and the diversity of generated hand poses. In particular, we develop a Latent Diffusion Model with an Adaptation Module for object-conditioned hand pose generation and a contact-aware loss to enforce the physical constraints between hands and objects. Extensive experiments demonstrate that our method achieves faster inference, higher diversity, and superior pose quality than state-of-the-art approaches. 
语种英语
DOIarXiv:2411.14786
相关网址查看原文
出处Arxiv
收录类别PPRN.PPRN
WOS记录号PPRN:119352806
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Software Engineering
资助项目NSFC[62350610269]
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/467835
专题信息科学与技术学院_PI研究组_马月昕
信息科学与技术学院_PI研究组_何旭明组
信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_师玉娇组
通讯作者Shi, Yujiao; He, Xuming
作者单位
1.ShanghaiTech Univ, Shanghai, Peoples R China
2.Shanghai Engn Res Ctr Intelligent Vis & Imaging, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Wu, Xiaofei,Liu, Tao,Li, Caoji,et al. FastGrasp: Efficient Grasp Synthesis with Diffusion. 2024.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wu, Xiaofei]的文章
[Liu, Tao]的文章
[Li, Caoji]的文章
百度学术
百度学术中相似的文章
[Wu, Xiaofei]的文章
[Liu, Tao]的文章
[Li, Caoji]的文章
必应学术
必应学术中相似的文章
[Wu, Xiaofei]的文章
[Liu, Tao]的文章
[Li, Caoji]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。