Conformational Space Profiling Enhances Generic Molecular Representation for AI-Powered Ligand-Based Drug Discovery
2024-08-01
发表期刊ADVANCED SCIENCE
ISSN2198-3844
EISSN2198-3844
卷号11期号:40
发表状态已发表
DOI10.1002/advs.202403998
摘要

["The molecular representation model is a neural network that converts molecular representations (SMILES, Graph) into feature vectors, and is an essential module applied across a wide range of artificial intelligence-driven drug discovery scenarios. However, current molecular representation models rarely consider the three-dimensional conformational space of molecules, losing sight of the dynamic nature of small molecules as well as the essence of molecular conformational space that covers the heterogeneity of molecule properties, such as the multi-target mechanism of action, recognition of different biomolecules, dynamics in cytoplasm and membrane. In this study, a new model named GeminiMol is proposed to incorporate conformational space profiles into molecular representation learning, which extracts the feature of capturing the complicated interplay between the molecular structure and the conformational space. Although GeminiMol is pre-trained on a relatively small-scale molecular dataset (39290 molecules), it shows balanced and superior performance not only on 67 molecular properties predictions but also on 73 cellular activity predictions and 171 zero-shot tasks (including virtual screening and target identification). By capturing the molecular conformational space profile, the strategy paves the way for rapid exploration of chemical space and facilitates changing paradigms for drug design.","By incorporating the molecular conformational space profile into the contrastive pre-training, the authors have developed a molecular representation model called GeminiMol, which is trained on a small-scale molecular dataset but has a relatively strong generalization ability on large-scale benchmark datasets. GeminiMol shows excellent performance on multiple downstream tasks, including ligand-based virtual screening, target identification, and Quantitative Structure-Activity Relationship (QSAR) modeling, etc., thus providing a useful molecular representation tool for artificial intelligence-based drug design areas. image"]

关键词cellular-level molecular activity modeling conformational space drug discovery ligand-based virtual screening molecular representation learning
URL查看原文
收录类别SCI ; EI
语种英语
资助项目National Key R&D Program of China[
WOS研究方向Chemistry ; Science & Technology - Other Topics ; Materials Science
WOS类目Chemistry, Multidisciplinary ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary
WOS记录号WOS:001299909900001
出版者WILEY
EI入藏号20243516961944
EI主题词Molecular docking
EI分类号103 ; 1101 ; 1106.1 ; 801 Chemistry ; 801.1 Chemistry, General ; 801.3 Colloid Chemistry
原始文献类型Article in Press
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/415899
专题免疫化学研究所
生命科学与技术学院
生命科学与技术学院_硕士生
生命科学与技术学院_博士生
免疫化学研究所_PI研究组_白芳组
通讯作者Bai, Fang
作者单位
1.Shanghai Tech Univ, Shanghai Inst Adv Immunochem Studies, Shanghai 201210, Peoples R China
2.Shanghai Tech Univ, Sch Life Sci & Technol, Shanghai 201210, Peoples R China
3.Shanghai Tech Univ, Shanghai Inst Adv Immunochem Studies, Shanghai Clin Res & Trial Ctr, Sch Life Sci & Technol,Informat Sci & Technol, Shanghai 201210, Peoples R China
第一作者单位免疫化学研究所;  生命科学与技术学院
通讯作者单位免疫化学研究所
第一作者的第一单位免疫化学研究所
推荐引用方式
GB/T 7714
Wang, Lin,Wang, Shihang,Yang, Hao,et al. Conformational Space Profiling Enhances Generic Molecular Representation for AI-Powered Ligand-Based Drug Discovery[J]. ADVANCED SCIENCE,2024,11(40).
APA Wang, Lin.,Wang, Shihang.,Yang, Hao.,Li, Shiwei.,Wang, Xinyu.,...&Bai, Fang.(2024).Conformational Space Profiling Enhances Generic Molecular Representation for AI-Powered Ligand-Based Drug Discovery.ADVANCED SCIENCE,11(40).
MLA Wang, Lin,et al."Conformational Space Profiling Enhances Generic Molecular Representation for AI-Powered Ligand-Based Drug Discovery".ADVANCED SCIENCE 11.40(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Lin]的文章
[Wang, Shihang]的文章
[Yang, Hao]的文章
百度学术
百度学术中相似的文章
[Wang, Lin]的文章
[Wang, Shihang]的文章
[Yang, Hao]的文章
必应学术
必应学术中相似的文章
[Wang, Lin]的文章
[Wang, Shihang]的文章
[Yang, Hao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。