ShanghaiTech University Knowledge Management System
Conformational Space Profiling Enhances Generic Molecular Representation for AI-Powered Ligand-Based Drug Discovery | |
2024-08-01 | |
发表期刊 | ADVANCED SCIENCE |
ISSN | 2198-3844 |
EISSN | 2198-3844 |
卷号 | 11期号:40 |
发表状态 | 已发表 |
DOI | 10.1002/advs.202403998 |
摘要 | ["The molecular representation model is a neural network that converts molecular representations (SMILES, Graph) into feature vectors, and is an essential module applied across a wide range of artificial intelligence-driven drug discovery scenarios. However, current molecular representation models rarely consider the three-dimensional conformational space of molecules, losing sight of the dynamic nature of small molecules as well as the essence of molecular conformational space that covers the heterogeneity of molecule properties, such as the multi-target mechanism of action, recognition of different biomolecules, dynamics in cytoplasm and membrane. In this study, a new model named GeminiMol is proposed to incorporate conformational space profiles into molecular representation learning, which extracts the feature of capturing the complicated interplay between the molecular structure and the conformational space. Although GeminiMol is pre-trained on a relatively small-scale molecular dataset (39290 molecules), it shows balanced and superior performance not only on 67 molecular properties predictions but also on 73 cellular activity predictions and 171 zero-shot tasks (including virtual screening and target identification). By capturing the molecular conformational space profile, the strategy paves the way for rapid exploration of chemical space and facilitates changing paradigms for drug design.","By incorporating the molecular conformational space profile into the contrastive pre-training, the authors have developed a molecular representation model called GeminiMol, which is trained on a small-scale molecular dataset but has a relatively strong generalization ability on large-scale benchmark datasets. GeminiMol shows excellent performance on multiple downstream tasks, including ligand-based virtual screening, target identification, and Quantitative Structure-Activity Relationship (QSAR) modeling, etc., thus providing a useful molecular representation tool for artificial intelligence-based drug design areas. image"] |
关键词 | cellular-level molecular activity modeling conformational space drug discovery ligand-based virtual screening molecular representation learning |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
资助项目 | National Key R&D Program of China[ |
WOS研究方向 | Chemistry ; Science & Technology - Other Topics ; Materials Science |
WOS类目 | Chemistry, Multidisciplinary ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary |
WOS记录号 | WOS:001299909900001 |
出版者 | WILEY |
EI入藏号 | 20243516961944 |
EI主题词 | Molecular docking |
EI分类号 | 103 ; 1101 ; 1106.1 ; 801 Chemistry ; 801.1 Chemistry, General ; 801.3 Colloid Chemistry |
原始文献类型 | Article in Press |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/415899 |
专题 | 免疫化学研究所 生命科学与技术学院 生命科学与技术学院_硕士生 生命科学与技术学院_博士生 免疫化学研究所_PI研究组_白芳组 |
通讯作者 | Bai, Fang |
作者单位 | 1.Shanghai Tech Univ, Shanghai Inst Adv Immunochem Studies, Shanghai 201210, Peoples R China 2.Shanghai Tech Univ, Sch Life Sci & Technol, Shanghai 201210, Peoples R China 3.Shanghai Tech Univ, Shanghai Inst Adv Immunochem Studies, Shanghai Clin Res & Trial Ctr, Sch Life Sci & Technol,Informat Sci & Technol, Shanghai 201210, Peoples R China |
第一作者单位 | 免疫化学研究所; 生命科学与技术学院 |
通讯作者单位 | 免疫化学研究所 |
第一作者的第一单位 | 免疫化学研究所 |
推荐引用方式 GB/T 7714 | Wang, Lin,Wang, Shihang,Yang, Hao,et al. Conformational Space Profiling Enhances Generic Molecular Representation for AI-Powered Ligand-Based Drug Discovery[J]. ADVANCED SCIENCE,2024,11(40). |
APA | Wang, Lin.,Wang, Shihang.,Yang, Hao.,Li, Shiwei.,Wang, Xinyu.,...&Bai, Fang.(2024).Conformational Space Profiling Enhances Generic Molecular Representation for AI-Powered Ligand-Based Drug Discovery.ADVANCED SCIENCE,11(40). |
MLA | Wang, Lin,et al."Conformational Space Profiling Enhances Generic Molecular Representation for AI-Powered Ligand-Based Drug Discovery".ADVANCED SCIENCE 11.40(2024). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。