| |||||||
ShanghaiTech University Knowledge Management System
TLimmuno2: predicting MHC class II antigen immunogenicity through transfer learning | |
2023-03 | |
发表期刊 | BRIEFINGS IN BIOINFORMATICS (IF:6.8[JCR-2023],7.9[5-Year]) |
ISSN | 1467-5463 |
EISSN | 1477-4054 |
发表状态 | 已发表 |
DOI | 10.1093/bib/bbad116 |
摘要 | Major histocompatibility complex (MHC) class II molecules play a pivotal role in antigen presentation and CD4+ T cell response. Accurate prediction of the immunogenicity of MHC class II-associated antigens is critical for vaccine design and cancer immunotherapies. However, current computational methods are limited by insufficient training data and algorithmic constraints, and the rules that govern which peptides are truly recognized by existing T cell receptors remain poorly understood. Here, we build a transfer learning-based, long short-term memory model named 'TLimmuno2' to predict whether epitope-MHC class II complex can elicit T cell response. Through leveraging binding affinity data, TLimmuno2 shows superior performance compared with existing models on independent validation datasets. TLimmuno2 can find real immunogenic neoantigen in real-world cancer immunotherapy data. The identification of significant MHC class II neoantigen-mediated immunoediting signal in the cancer genome atlas pan-cancer dataset further suggests the robustness of TLimmuno2 in identifying really immunogenic neoantigens that are undergoing negative selection during cancer evolution. Overall, TLimmuno2 is a powerful tool for the immunogenicity prediction of MHC class II presented epitopes and could promote the development of personalized immunotherapies. |
关键词 | CD4+ T cell immunogenicity long short-term memory neoantigen transfer learning |
URL | 查看原文 |
收录类别 | SCI |
语种 | 英语 |
WOS研究方向 | Biochemistry & Molecular Biology ; Mathematical & Computational Biology |
WOS类目 | Biochemical Research Methods ; Mathematical & Computational Biology |
WOS记录号 | WOS:000951745000001 |
出版者 | OXFORD UNIV PRESS |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/286632 |
专题 | 生命科学与技术学院 生命科学与技术学院_PI研究组_刘雪松组 生命科学与技术学院_公共科研平台_模式动物平台 生命科学与技术学院_硕士生 生命科学与技术学院_博士生 |
通讯作者 | Liu, Xue-Song |
作者单位 | 1.ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai 201203, Peoples R China 2.Shanghai Univ Tradit Chinese Med, Shuguang Hosp, Dept Urol, Shanghai 200120, Peoples R China |
第一作者单位 | 生命科学与技术学院 |
通讯作者单位 | 生命科学与技术学院 |
第一作者的第一单位 | 生命科学与技术学院 |
推荐引用方式 GB/T 7714 | Wang, Guangshuai,Wu, Tao,Ning, Wei,et al. TLimmuno2: predicting MHC class II antigen immunogenicity through transfer learning[J]. BRIEFINGS IN BIOINFORMATICS,2023. |
APA | Wang, Guangshuai.,Wu, Tao.,Ning, Wei.,Diao, Kaixuan.,Sun, Xiaoqin.,...&Liu, Xue-Song.(2023).TLimmuno2: predicting MHC class II antigen immunogenicity through transfer learning.BRIEFINGS IN BIOINFORMATICS. |
MLA | Wang, Guangshuai,et al."TLimmuno2: predicting MHC class II antigen immunogenicity through transfer learning".BRIEFINGS IN BIOINFORMATICS (2023). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。