ShanghaiTech University Knowledge Management System
PPI-Miner: A Structure and Sequence Motif Co-Driven Protein-Protein Interaction Mining and Modeling Computational Method | |
2022-11-01 | |
发表期刊 | JOURNAL OF CHEMICAL INFORMATION AND MODELING
![]() |
ISSN | 1549-9596 |
EISSN | 1549-960X |
发表状态 | 已发表 |
DOI | 10.1021/acs.jcim.2c01033 |
摘要 | Protein-protein interactions (PPIs) play important roles in biological processes of life, and predicting PPIs becomes a critical scientific issue of concern. Most PPIs occur through small domains or motifs (fragments), which are challenging and laborious to map by standard biochemical approaches because they generally require the cloning of several truncation mutants. Here, we present a computational method, named as PPI-Miner, to fish potential protein interacting partners utilizing protein motifs as queries. In brief, this work first developed a motif-matching algorithm designed to identify the proteins that contain sequential or structural similar motifs with the given query motif. Being aligned to the query motif, the binding mode of the discovered motif and its receptor protein will be initially determined to be used to build PPI complexes accordingly. Eventually, a PPI complex structure could be built and optimized with a designed automatic protocol. Besides discovering PPIs, PPI-Miner can also be applied to other areas, i.e., the rational design of molecular glues and protein vaccines. In this work, PPI-Miner was employed to mine the potential cereblon (CRBN) substrates from human proteome. As a result, 1,739 candidates were predicted, and 16 of them have been experimentally validated in previous studies. The source code of PPI-Miner can be obtained from the GitHub repository (https://github.com/Wang-Lin-boop/PPI-Miner), the webserver is freely available for users (https://bailab.siais.shanghaitech.edu. cn/services/ppi-miner), and the database of predicted CRBN substrates is accessible at https://bailab.siais.shanghaitech.edu.cn/ services/crbn-subslib. |
URL | 查看原文 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Key R&D Program of China["2020YFA0509700","2022YFC3400501"] ; Lingang Laboratory[LG202102-01-03] ; Shanghai Science and Technology Development Funds["20QA1406400","22ZR1441400"] ; National Natural Science Foundation of China[82003654] |
WOS研究方向 | Pharmacology & Pharmacy ; Chemistry ; Computer Science |
WOS类目 | Chemistry, Medicinal ; Chemistry, Multidisciplinary ; Computer Science, Information Systems ; Computer Science, Interdisciplinary Applications |
WOS记录号 | WOS:000892084300001 |
出版者 | AMER CHEMICAL SOC |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/258929 |
专题 | 免疫化学研究所_PI研究组_白芳组 生命科学与技术学院_PI研究组_仓勇组 生命科学与技术学院_博士生 信息科学与技术学院_硕士生 |
通讯作者 | Bai, Fang |
作者单位 | 1.ShanghaiTech Univ, Shanghai Inst Adv Immunochem Studies, Sch Life Sci & Technol Informat Sci & Technol, Shanghai 201210, Peoples R China 2.ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai 201210, Peoples R China 3.Shanghai Clin Res & Trial Ctr, Shanghai 201210, Peoples R China |
第一作者单位 | 免疫化学研究所 |
通讯作者单位 | 免疫化学研究所 |
第一作者的第一单位 | 免疫化学研究所 |
推荐引用方式 GB/T 7714 | Wang, Lin,Li, Feng-lei,Ma, Xin-yue,et al. PPI-Miner: A Structure and Sequence Motif Co-Driven Protein-Protein Interaction Mining and Modeling Computational Method[J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING,2022. |
APA | Wang, Lin,Li, Feng-lei,Ma, Xin-yue,Cang, Yong,&Bai, Fang.(2022).PPI-Miner: A Structure and Sequence Motif Co-Driven Protein-Protein Interaction Mining and Modeling Computational Method.JOURNAL OF CHEMICAL INFORMATION AND MODELING. |
MLA | Wang, Lin,et al."PPI-Miner: A Structure and Sequence Motif Co-Driven Protein-Protein Interaction Mining and Modeling Computational Method".JOURNAL OF CHEMICAL INFORMATION AND MODELING (2022). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。