PPI-Miner: A Structure and Sequence Motif Co-Driven Protein-Protein Interaction Mining and Modeling Computational Method
2022-11-01
发表期刊JOURNAL OF CHEMICAL INFORMATION AND MODELING
ISSN1549-9596
EISSN1549-960X
发表状态已发表
DOI10.1021/acs.jcim.2c01033
摘要Protein-protein interactions (PPIs) play important roles in biological processes of life, and predicting PPIs becomes a critical scientific issue of concern. Most PPIs occur through small domains or motifs (fragments), which are challenging and laborious to map by standard biochemical approaches because they generally require the cloning of several truncation mutants. Here, we present a computational method, named as PPI-Miner, to fish potential protein interacting partners utilizing protein motifs as queries. In brief, this work first developed a motif-matching algorithm designed to identify the proteins that contain sequential or structural similar motifs with the given query motif. Being aligned to the query motif, the binding mode of the discovered motif and its receptor protein will be initially determined to be used to build PPI complexes accordingly. Eventually, a PPI complex structure could be built and optimized with a designed automatic protocol. Besides discovering PPIs, PPI-Miner can also be applied to other areas, i.e., the rational design of molecular glues and protein vaccines. In this work, PPI-Miner was employed to mine the potential cereblon (CRBN) substrates from human proteome. As a result, 1,739 candidates were predicted, and 16 of them have been experimentally validated in previous studies. The source code of PPI-Miner can be obtained from the GitHub repository (https://github.com/Wang-Lin-boop/PPI-Miner), the webserver is freely available for users (https://bailab.siais.shanghaitech.edu. cn/services/ppi-miner), and the database of predicted CRBN substrates is accessible at https://bailab.siais.shanghaitech.edu.cn/ services/crbn-subslib.
URL查看原文
收录类别SCI
语种英语
资助项目National Key R&D Program of China["2020YFA0509700","2022YFC3400501"] ; Lingang Laboratory[LG202102-01-03] ; Shanghai Science and Technology Development Funds["20QA1406400","22ZR1441400"] ; National Natural Science Foundation of China[82003654]
WOS研究方向Pharmacology & Pharmacy ; Chemistry ; Computer Science
WOS类目Chemistry, Medicinal ; Chemistry, Multidisciplinary ; Computer Science, Information Systems ; Computer Science, Interdisciplinary Applications
WOS记录号WOS:000892084300001
出版者AMER CHEMICAL SOC
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/258929
专题免疫化学研究所_PI研究组_白芳组
生命科学与技术学院_PI研究组_仓勇组
生命科学与技术学院_博士生
信息科学与技术学院_硕士生
通讯作者Bai, Fang
作者单位
1.ShanghaiTech Univ, Shanghai Inst Adv Immunochem Studies, Sch Life Sci & Technol Informat Sci & Technol, Shanghai 201210, Peoples R China
2.ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai 201210, Peoples R China
3.Shanghai Clin Res & Trial Ctr, Shanghai 201210, Peoples R China
第一作者单位免疫化学研究所
通讯作者单位免疫化学研究所
第一作者的第一单位免疫化学研究所
推荐引用方式
GB/T 7714
Wang, Lin,Li, Feng-lei,Ma, Xin-yue,et al. PPI-Miner: A Structure and Sequence Motif Co-Driven Protein-Protein Interaction Mining and Modeling Computational Method[J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING,2022.
APA Wang, Lin,Li, Feng-lei,Ma, Xin-yue,Cang, Yong,&Bai, Fang.(2022).PPI-Miner: A Structure and Sequence Motif Co-Driven Protein-Protein Interaction Mining and Modeling Computational Method.JOURNAL OF CHEMICAL INFORMATION AND MODELING.
MLA Wang, Lin,et al."PPI-Miner: A Structure and Sequence Motif Co-Driven Protein-Protein Interaction Mining and Modeling Computational Method".JOURNAL OF CHEMICAL INFORMATION AND MODELING (2022).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Lin]的文章
[Li, Feng-lei]的文章
[Ma, Xin-yue]的文章
百度学术
百度学术中相似的文章
[Wang, Lin]的文章
[Li, Feng-lei]的文章
[Ma, Xin-yue]的文章
必应学术
必应学术中相似的文章
[Wang, Lin]的文章
[Li, Feng-lei]的文章
[Ma, Xin-yue]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。