ShanghaiTech University Knowledge Management System
DeepPROTACs is a deep learning-based targeted degradation predictor for PROTACs | |
2022-11-21 | |
发表期刊 | NATURE COMMUNICATIONS (IF:14.7[JCR-2023],16.1[5-Year]) |
EISSN | 2041-1723 |
卷号 | 13期号:1 |
发表状态 | 已发表 |
DOI | 10.1038/s41467-022-34807-3 |
摘要 | The rational design of PROTACs is difficult due to their obscure structure-activity relationship. This study introduces a deep neural network model - DeepPROTACs to help design potent PROTACs molecules. It can predict the degradation capacity of a proposed PROTAC molecule based on structures of given target protein and E3 ligase. The experimental dataset is mainly collected from PROTAC-DB and appropriately labeled according to the DC50 and Dmax values. In the model of DeepPROTACs, the ligands as well as the ligand binding pockets are generated and represented with graphs and fed into Graph Convolutional Networks for feature extraction. While SMILES representations of linkers are fed into a Bidirectional Long Short-Term Memory layer to generate the features. Experiments show that DeepPROTACs model achieves 77.95% average prediction accuracy and 0.8470 area under receiver operating characteristic curve on the test set. DeepPROTACs is available online at a web server (https://bailab.siais.shanghaitech.edu.cn/services/deepprotacs/) and at github (https://github.com/fenglei104/DeepPROTACs). |
URL | 查看原文 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Lingang Laboratory[LG202102-01-03] ; Shanghai Science and Technology Development Funds["22ZR1441400","20QA1406400"] ; National Natural Science Foundation of China[82003654] ; National Key R&D Program of China["2018AAA0100704","2020YFA0509700"] ; NSFC[61932020] ; Science and Technology Commission of Shanghai Municipality[20ZR1436000] |
WOS研究方向 | Science & Technology - Other Topics |
WOS类目 | Multidisciplinary Sciences |
WOS记录号 | WOS:000888056100014 |
出版者 | NATURE PORTFOLIO |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/256375 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_高盛华组 生命科学与技术学院_硕士生 生命科学与技术学院_博士生 免疫化学研究所_PI研究组_白芳组 |
通讯作者 | Yang, Xiaobao; Gao, Shenghua; Bai, Fang |
作者单位 | 1.ShanghaiTech Univ, Shanghai Inst Adv Immunochem Studies, 393 Middle Huaxia Rd, Shanghai 201210, Peoples R China 2.ShanghaiTech Univ, Sch Informat Sci & Technol, 393 Middle Huaxia Rd, Shanghai 201210, Peoples R China 3.Gluetacs Therapeut Shanghai Co Ltd, 99 Haike Rd,Zhangjiang Hitech Pk, Shanghai 201210, Peoples R China 4.ShanghaiTech Univ, Sch Life Sci & Technol, 393 Middle Huaxia Rd, Shanghai 201210, Peoples R China 5.Shanghai Clin Res & Trial Ctr, Shanghai 201210, Peoples R China |
第一作者单位 | 免疫化学研究所; 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院; 免疫化学研究所; 生命科学与技术学院 |
第一作者的第一单位 | 免疫化学研究所 |
推荐引用方式 GB/T 7714 | Li, Fenglei,Hu, Qiaoyu,Zhang, Xianglei,et al. DeepPROTACs is a deep learning-based targeted degradation predictor for PROTACs[J]. NATURE COMMUNICATIONS,2022,13(1). |
APA | Li, Fenglei.,Hu, Qiaoyu.,Zhang, Xianglei.,Sun, Renhong.,Liu, Zhuanghua.,...&Bai, Fang.(2022).DeepPROTACs is a deep learning-based targeted degradation predictor for PROTACs.NATURE COMMUNICATIONS,13(1). |
MLA | Li, Fenglei,et al."DeepPROTACs is a deep learning-based targeted degradation predictor for PROTACs".NATURE COMMUNICATIONS 13.1(2022). |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。