ShanghaiTech University Knowledge Management System
An Intensity-based Post-processing Tool for 3D Instance Segmentation of Organelles in Soft X-ray Tomograms | |
2022 | |
发表期刊 | PLOS ONE (IF:2.9[JCR-2023],3.3[5-Year]) |
ISSN | 1932-6203 |
卷号 | 17期号:9 |
发表状态 | 已发表 |
DOI | DOI: 10.1371/journal.pone.02982R1 |
摘要 | Investigating the 3D structures and rearrangements of organelles within a single cell is critical for better characterizing cellular function. Imaging approaches such as soft X-ray tomography have been widely applied to reveal a complex subcellular organization involving multiple inter-organelle interactions. However, 3D segmentation of organelle instances has been challenging despite its importance in organelle characterization. Here we propose an intensity-based post-processing tool to identify and separate organelle instances. Our tool separates sphere-like (insulin vesicle) and columnar-shaped organelle instances (mitochondrion) based on the intensity of raw tomograms, semantic segmentation masks, and organelle morphology. We validate our tool using synthetic tomograms of organelles and experimental tomograms of pancreatic β-cells to separate insulin vesicle and mitochondria instances. As compared to the commonly used connected regions labeling, watershed, and watershed + Gaussian filter methods, our tool results in improved accuracy in identifying organelles in the synthetic tomograms and an improved description of organelle structures in β-cell tomograms. In addition, under different experimental treatment conditions, significant changes in volumes and intensities of both insulin vesicle and mitochondrion are observed in our instance results, revealing their potential roles in maintaining normal β-cell function. Our tool is expected to be applicable for improving the instance segmentation of other images obtained from different cell types using multiple imaging modalities. |
URL | 查看原文 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Institute of Health (NIH)["P41GM103445","P30GM138441"] ; Department of Energy's 's office of Biological and Environmental Research (DOE's office of Biological and Environmental Research)[DE-AC02-5CH11231] ; National Natural Science Foundation of China (NSFC)[31950410543] ; Science and Technology Commission of Shanghai Municipality (STCSM)[21ZR1442500] |
WOS研究方向 | Science & Technology - Other Topics |
WOS类目 | Multidisciplinary Sciences |
WOS记录号 | WOS:000892263300015 |
出版者 | PUBLIC LIBRARY SCIENCE |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/214823 |
专题 | iHuman研究所_特聘教授组_Andrej Sali组 iHuman研究所_特聘教授组_Raymond Stevens组 iHuman研究所_PI研究组_Garth John Thompson组 生命科学与技术学院_硕士生 |
通讯作者 | White, Kate; Singla, Jitin; Sun, Liping |
作者单位 | 1.ShanghaiTech Univ, IHuman Inst, Shanghai, Peoples R China 2.ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai, Peoples R China 3.Univ Chinese Acad Sci, Beijing, Peoples R China 4.Indian Inst Technol Roorkee, Dept Biosci & Bioengn, Roorkee, Uttarakhand, India 5.Univ Southern Calif, Dept Biol Sci, Bridge Inst, Los Angeles, CA 90007 USA 6.Univ Calif San Francisco, Dept Anat, San Francisco, CA 94143 USA 7.Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA USA 8.Univ Calif San Francisco, Dept Pharmaceut Chem, Dept Bioengn & Therapeut Sci, Calif Inst Quantitat Biosci, San Francisco, CA USA 9.Univ Southern Calif, Bridge Inst, Dept Chem, Los Angeles, CA 90007 USA |
第一作者单位 | iHuman研究所; 生命科学与技术学院 |
通讯作者单位 | iHuman研究所; 生命科学与技术学院 |
第一作者的第一单位 | iHuman研究所 |
推荐引用方式 GB/T 7714 | Li, Angdi,Zhang, Shuning,Loconte, Valentina,et al. An Intensity-based Post-processing Tool for 3D Instance Segmentation of Organelles in Soft X-ray Tomograms[J]. PLOS ONE,2022,17(9). |
APA | Li, Angdi.,Zhang, Shuning.,Loconte, Valentina.,Liu, Yan.,Ekman, Axel.,...&Sun, Liping.(2022).An Intensity-based Post-processing Tool for 3D Instance Segmentation of Organelles in Soft X-ray Tomograms.PLOS ONE,17(9). |
MLA | Li, Angdi,et al."An Intensity-based Post-processing Tool for 3D Instance Segmentation of Organelles in Soft X-ray Tomograms".PLOS ONE 17.9(2022). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。