Rethinking the Fourier-Mellin Transform: Multiple Depths in the Camera's View
2021-03
发表期刊REMOTE SENSING (IF:4.2[JCR-2023],4.9[5-Year])
ISSN2072-4292
EISSN2072-4292
卷号13期号:5
发表状态已发表
DOI10.3390/rs13051000
摘要

Remote sensing and robotics often rely on visual odometry (VO) for localization. Many standard approaches for VO use feature detection. However, these methods will meet challenges if the environments are feature-deprived or highly repetitive. Fourier-Mellin Transform (FMT) is an alternative VO approach that has been shown to show superior performance in these scenarios and is often used in remote sensing. One limitation of FMT is that it requires an environment that is equidistant to the camera, i.e., single-depth. To extend the applications of FMT to multi-depth environments, this paper presents the extended Fourier-Mellin Transform (eFMT), which maintains the advantages of FMT with respect to feature-deprived scenarios. To show the robustness and accuracy of eFMT, we implement an eFMT-based visual odometry framework and test it in toy examples and a large-scale drone dataset. All these experiments are performed on data collected in challenging scenarios, such as, trees, wooden boards and featureless roofs. The results show that eFMT performs better than FMT in the multi-depth settings. Moreover, eFMT also outperforms state-of-the-art VO algorithms, such as ORB-SLAM3, SVO and DSO, in our experiments.

关键词drone-based remote sensing Fourier-Mellin transform visual odometry 3D perception spectral registration
URL查看原文
收录类别SCIE ; EI
WOS研究方向Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:000628499000001
出版者MDPI
EI入藏号20211210115190
原始文献类型Article
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/126174
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_Sören Schwertfeger组
信息科学与技术学院_PI研究组_Laurent Kneip组
信息科学与技术学院_硕士生
通讯作者Xu, Qingwen
作者单位
1.ShanghaiTech Univ, Sch Informat Sci Technol, Shanghai 201210, Peoples R China;
2.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai 200050, Peoples R China;
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Xu, Qingwen,Kuang, Haofei,Kneip, Laurent,et al. Rethinking the Fourier-Mellin Transform: Multiple Depths in the Camera's View[J]. REMOTE SENSING,2021,13(5).
APA Xu, Qingwen,Kuang, Haofei,Kneip, Laurent,&Schwertfeger, Sören.(2021).Rethinking the Fourier-Mellin Transform: Multiple Depths in the Camera's View.REMOTE SENSING,13(5).
MLA Xu, Qingwen,et al."Rethinking the Fourier-Mellin Transform: Multiple Depths in the Camera's View".REMOTE SENSING 13.5(2021).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xu, Qingwen]的文章
[Kuang, Haofei]的文章
[Kneip, Laurent]的文章
百度学术
百度学术中相似的文章
[Xu, Qingwen]的文章
[Kuang, Haofei]的文章
[Kneip, Laurent]的文章
必应学术
必应学术中相似的文章
[Xu, Qingwen]的文章
[Kuang, Haofei]的文章
[Kneip, Laurent]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.3390@rs13051000.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。