ShanghaiTech University Knowledge Management System
Rethinking the Fourier-Mellin Transform: Multiple Depths in the Camera's View | |
2021-03 | |
发表期刊 | REMOTE SENSING (IF:4.2[JCR-2023],4.9[5-Year]) |
ISSN | 2072-4292 |
EISSN | 2072-4292 |
卷号 | 13期号:5 |
发表状态 | 已发表 |
DOI | 10.3390/rs13051000 |
摘要 | Remote sensing and robotics often rely on visual odometry (VO) for localization. Many standard approaches for VO use feature detection. However, these methods will meet challenges if the environments are feature-deprived or highly repetitive. Fourier-Mellin Transform (FMT) is an alternative VO approach that has been shown to show superior performance in these scenarios and is often used in remote sensing. One limitation of FMT is that it requires an environment that is equidistant to the camera, i.e., single-depth. To extend the applications of FMT to multi-depth environments, this paper presents the extended Fourier-Mellin Transform (eFMT), which maintains the advantages of FMT with respect to feature-deprived scenarios. To show the robustness and accuracy of eFMT, we implement an eFMT-based visual odometry framework and test it in toy examples and a large-scale drone dataset. All these experiments are performed on data collected in challenging scenarios, such as, trees, wooden boards and featureless roofs. The results show that eFMT performs better than FMT in the multi-depth settings. Moreover, eFMT also outperforms state-of-the-art VO algorithms, such as ORB-SLAM3, SVO and DSO, in our experiments. |
关键词 | drone-based remote sensing Fourier-Mellin transform visual odometry 3D perception spectral registration |
URL | 查看原文 |
收录类别 | SCIE ; EI |
WOS研究方向 | Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS类目 | Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS记录号 | WOS:000628499000001 |
出版者 | MDPI |
EI入藏号 | 20211210115190 |
原始文献类型 | Article |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/126174 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_Sören Schwertfeger组 信息科学与技术学院_PI研究组_Laurent Kneip组 信息科学与技术学院_硕士生 |
通讯作者 | Xu, Qingwen |
作者单位 | 1.ShanghaiTech Univ, Sch Informat Sci Technol, Shanghai 201210, Peoples R China; 2.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai 200050, Peoples R China; 3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Xu, Qingwen,Kuang, Haofei,Kneip, Laurent,et al. Rethinking the Fourier-Mellin Transform: Multiple Depths in the Camera's View[J]. REMOTE SENSING,2021,13(5). |
APA | Xu, Qingwen,Kuang, Haofei,Kneip, Laurent,&Schwertfeger, Sören.(2021).Rethinking the Fourier-Mellin Transform: Multiple Depths in the Camera's View.REMOTE SENSING,13(5). |
MLA | Xu, Qingwen,et al."Rethinking the Fourier-Mellin Transform: Multiple Depths in the Camera's View".REMOTE SENSING 13.5(2021). |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。