| |||||||
ShanghaiTech University Knowledge Management System
UniDB: A Unified Diffusion Bridge Framework via Stochastic Optimal Control | |
2025-02-11 | |
状态 | 已发表 |
摘要 | Recent advances in diffusion bridge models leverage Doob's $h$-transform to establish fixed endpoints between distributions, demonstrating promising results in image translation and restoration tasks. However, these approaches frequently produce blurred or excessively smoothed image details and lack a comprehensive theoretical foundation to explain these shortcomings. To address these limitations, we propose UniDB, a unified framework for diffusion bridges based on Stochastic Optimal Control (SOC). UniDB formulates the problem through an SOC-based optimization and derives a closed-form solution for the optimal controller, thereby unifying and generalizing existing diffusion bridge models. We demonstrate that existing diffusion bridges employing Doob's $h$-transform constitute a special case of our framework, emerging when the terminal penalty coefficient in the SOC cost function tends to infinity. By incorporating a tunable terminal penalty coefficient, UniDB achieves an optimal balance between control costs and terminal penalties, substantially improving detail preservation and output quality. Notably, UniDB seamlessly integrates with existing diffusion bridge models, requiring only minimal code modifications. Extensive experiments across diverse image restoration tasks validate the superiority and adaptability of the proposed framework. Our code is available at https://github.com/UniDB-SOC/UniDB/. |
语种 | 英语 |
DOI | arXiv:2502.05749 |
相关网址 | 查看原文 |
出处 | Arxiv |
收录类别 | PPRN.PPRN |
WOS记录号 | PPRN:121299166 |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Software Engineering ; Engineering, Electrical& Electronic |
资助项目 | ShanghaiTech AI4S Initiative[SHTAI4S202404] ; Shanghai Local College Capacity Building Program[23010503100] ; NSFC[62303319] |
文献类型 | 预印本 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/507013 |
专题 | 信息科学与技术学院_PI研究组_汪婧雅组 信息科学与技术学院_PI研究组_虞晶怡组 信息科学与技术学院_硕士生 信息科学与技术学院_本科生 信息科学与技术学院_PI研究组_马月昕 信息科学与技术学院_PI研究组_石野组 |
通讯作者 | Zhu, Kaizhen |
作者单位 | 1.ShanghaiTech Univ, Shanghai, Peoples R China 2.Human Machine Collaborat, MoE Key Lab Intelligent Percept, Shanghai, Peoples R China 3.Fudan Univ, Shanghai, Peoples R China |
推荐引用方式 GB/T 7714 | Zhu, Kaizhen,Pan, Mokai,Ma, Yuexin,et al. UniDB: A Unified Diffusion Bridge Framework via Stochastic Optimal Control. 2025. |
条目包含的文件 | ||||||
条目无相关文件。 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。