RGB-based Category-level Object Pose Estimation via Decoupled Metric Scale Recovery
2024
会议录名称PROCEEDINGS - IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION
ISSN1050-4729
页码2036-2042
发表状态已发表
DOI10.1109/ICRA57147.2024.10611723
摘要While showing promising results, recent RGB-D camera-based category-level object pose estimation methods have restricted applications due to the heavy reliance on depth sensors. RGB-only methods provide an alternative to this problem yet suffer from inherent scale ambiguity stemming from monocular observations. In this paper, we propose a novel pipeline that decouples the 6D pose and size estimation to mitigate the influence of imperfect scales on rigid transformations. Specifically, we leverage a pre-trained monocular estimator to extract local geometric information, mainly facilitating the search for inlier 2D-3D correspondence. Meanwhile, a separate branch is designed to directly recover the metric scale of the object based on category-level statistics. Finally, we advocate using the RANSAC-PnP algorithm to robustly solve for 6D object pose. Extensive experiments have been conducted on both synthetic and real datasets, demonstrating the superior performance of our method over previous state-of-the-art RGB-based approaches, especially in terms of rotation accuracy. Code: https://github.com/goldoak/DMSR. © 2024 IEEE.
会议录编者/会议主办者Beijing NOKOV Science and Technology Co., Ltd. ; et al. ; Kawasaki Heavy Industries, Ltd. ; Kuka AG ; Schunk SE and Co. KG ; ShangHai CHINGMU Tech Ltd
关键词Object detection RGB color model Size determination Camera-based Depth sensors Estimation methods Geometric information Object based Object pose Objects-based Pose-estimation Rigid transformations Size estimation
会议名称2024 IEEE International Conference on Robotics and Automation, ICRA 2024
会议地点1-1-1, Minato Mirai, Nishi-ku, Yokohama, Japan
会议日期May 13, 2024 - May 17, 2024
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20243516964061
EI主题词Object recognition
EI分类号1106.3.1 ; 1106.8 ; 214 ; 741.1/Optics ; 941.5¬≠
原始文献类型Conference article (CA)
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/421454
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_Laurent Kneip组
通讯作者Wei, Jiaxin
作者单位
1.Technical University of Munich, Smart Robotics Lab, CIT, Germany;
2.ShanghaiTech University, Mobile Perception Lab, SIST, China;
3.Tencent, China;
4.Australian National University, Australia
第一作者单位上海科技大学
通讯作者单位上海科技大学
推荐引用方式
GB/T 7714
Wei, Jiaxin,Song, Xibin,Liu, Weizhe,et al. RGB-based Category-level Object Pose Estimation via Decoupled Metric Scale Recovery[C]//Beijing NOKOV Science and Technology Co., Ltd., et al., Kawasaki Heavy Industries, Ltd., Kuka AG, Schunk SE and Co. KG, ShangHai CHINGMU Tech Ltd:Institute of Electrical and Electronics Engineers Inc.,2024:2036-2042.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wei, Jiaxin]的文章
[Song, Xibin]的文章
[Liu, Weizhe]的文章
百度学术
百度学术中相似的文章
[Wei, Jiaxin]的文章
[Song, Xibin]的文章
[Liu, Weizhe]的文章
必应学术
必应学术中相似的文章
[Wei, Jiaxin]的文章
[Song, Xibin]的文章
[Liu, Weizhe]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@ICRA57147.2024.10611723.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。