ShanghaiTech University Knowledge Management System
RGB-based Category-level Object Pose Estimation via Decoupled Metric Scale Recovery | |
2024 | |
会议录名称 | PROCEEDINGS - IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION |
ISSN | 1050-4729 |
页码 | 2036-2042 |
发表状态 | 已发表 |
DOI | 10.1109/ICRA57147.2024.10611723 |
摘要 | While showing promising results, recent RGB-D camera-based category-level object pose estimation methods have restricted applications due to the heavy reliance on depth sensors. RGB-only methods provide an alternative to this problem yet suffer from inherent scale ambiguity stemming from monocular observations. In this paper, we propose a novel pipeline that decouples the 6D pose and size estimation to mitigate the influence of imperfect scales on rigid transformations. Specifically, we leverage a pre-trained monocular estimator to extract local geometric information, mainly facilitating the search for inlier 2D-3D correspondence. Meanwhile, a separate branch is designed to directly recover the metric scale of the object based on category-level statistics. Finally, we advocate using the RANSAC-PnP algorithm to robustly solve for 6D object pose. Extensive experiments have been conducted on both synthetic and real datasets, demonstrating the superior performance of our method over previous state-of-the-art RGB-based approaches, especially in terms of rotation accuracy. Code: https://github.com/goldoak/DMSR. © 2024 IEEE. |
会议录编者/会议主办者 | Beijing NOKOV Science and Technology Co., Ltd. ; et al. ; Kawasaki Heavy Industries, Ltd. ; Kuka AG ; Schunk SE and Co. KG ; ShangHai CHINGMU Tech Ltd |
关键词 | Object detection RGB color model Size determination Camera-based Depth sensors Estimation methods Geometric information Object based Object pose Objects-based Pose-estimation Rigid transformations Size estimation |
会议名称 | 2024 IEEE International Conference on Robotics and Automation, ICRA 2024 |
会议地点 | 1-1-1, Minato Mirai, Nishi-ku, Yokohama, Japan |
会议日期 | May 13, 2024 - May 17, 2024 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20243516964061 |
EI主题词 | Object recognition |
EI分类号 | 1106.3.1 ; 1106.8 ; 214 ; 741.1/Optics ; 941.5¬≠ |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/421454 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_Laurent Kneip组 |
通讯作者 | Wei, Jiaxin |
作者单位 | 1.Technical University of Munich, Smart Robotics Lab, CIT, Germany; 2.ShanghaiTech University, Mobile Perception Lab, SIST, China; 3.Tencent, China; 4.Australian National University, Australia |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Wei, Jiaxin,Song, Xibin,Liu, Weizhe,et al. RGB-based Category-level Object Pose Estimation via Decoupled Metric Scale Recovery[C]//Beijing NOKOV Science and Technology Co., Ltd., et al., Kawasaki Heavy Industries, Ltd., Kuka AG, Schunk SE and Co. KG, ShangHai CHINGMU Tech Ltd:Institute of Electrical and Electronics Engineers Inc.,2024:2036-2042. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。