消息
×
loading..
Zero-shot prediction of mutation effects with multimodal deep representation learning guides protein engineering
2024-07-01
发表期刊CELL RESEARCH (IF:28.1[JCR-2023],36.4[5-Year])
ISSN1001-0602
EISSN1748-7838
发表状态已发表
DOI10.1038/s41422-024-00989-2
摘要

Mutations in amino acid sequences can provoke changes in protein function. Accurate and unsupervised prediction of mutation effects is critical in biotechnology and biomedicine, but remains a fundamental challenge. To resolve this challenge, here we present Protein Mutational Effect Predictor (ProMEP), a general and multiple sequence alignment-free method that enables zero-shot prediction of mutation effects. A multimodal deep representation learning model embedded in ProMEP was developed to comprehensively learn both sequence and structure contexts from similar to 160 million proteins. ProMEP achieves state-of-the-art performance in mutational effect prediction and accomplishes a tremendous improvement in speed, enabling efficient and intelligent protein engineering. Specifically, ProMEP accurately forecasts mutational consequences on the gene-editing enzymes TnpB and TadA, and successfully guides the development of high-performance gene-editing tools with their engineered variants. The gene-editing efficiency of a 5-site mutant of TnpB reaches up to 74.04% (vs 24.66% for the wild type); and the base editing tool developed on the basis of a TadA 15-site mutant (in addition to the A106V/D108N double mutation that renders deoxyadenosine deaminase activity to TadA) exhibits an A-to-G conversion frequency of up to 77.27% (vs 69.80% for ABE8e, a previous TadA-based adenine base editor) with significantly reduced bystander and off-target effects compared to ABE8e. ProMEP not only showcases superior performance in predicting mutational effects on proteins but also demonstrates a great capability to guide protein engineering. Therefore, ProMEP enables efficient exploration of the gigantic protein space and facilitates practical design of proteins, thereby advancing studies in biomedicine and synthetic biology.

URL查看原文
收录类别SCI
语种英语
资助项目National Key R&D Program of China[
WOS研究方向Cell Biology
WOS类目Cell Biology
WOS记录号WOS:001263319800002
出版者SPRINGERNATURE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/404272
专题iHuman研究所
生命科学与技术学院
生命科学与技术学院_PI研究组_黄行许组
iHuman研究所_PI研究组_赵素文组
通讯作者Zhu, Shiqiang; Zhang, Jun; Shu, Wenjie; Wang, Shengqi
作者单位
1.Bioinformat Ctr AMMS, Beijing, Peoples R China
2.Nanjing Med Univ, Womens Hosp, Nanjing Matern & Child Hlth Care Hosp, State Key Lab Reprod Med & Offspring Hlth, Nanjing, Jiangsu, Peoples R China
3.Zhejiang Lab, Hangzhou, Zhejiang, Peoples R China
4.ShanghaiTech Univ, IHuman Inst, Shanghai, Peoples R China
5.ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Cheng, Peng,Mao, Cong,Tang, Jin,et al. Zero-shot prediction of mutation effects with multimodal deep representation learning guides protein engineering[J]. CELL RESEARCH,2024.
APA Cheng, Peng.,Mao, Cong.,Tang, Jin.,Yang, Sen.,Cheng, Yu.,...&Wang, Shengqi.(2024).Zero-shot prediction of mutation effects with multimodal deep representation learning guides protein engineering.CELL RESEARCH.
MLA Cheng, Peng,et al."Zero-shot prediction of mutation effects with multimodal deep representation learning guides protein engineering".CELL RESEARCH (2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Cheng, Peng]的文章
[Mao, Cong]的文章
[Tang, Jin]的文章
百度学术
百度学术中相似的文章
[Cheng, Peng]的文章
[Mao, Cong]的文章
[Tang, Jin]的文章
必应学术
必应学术中相似的文章
[Cheng, Peng]的文章
[Mao, Cong]的文章
[Tang, Jin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。