PoLM: Point Cloud and Large Pre-trained Model Catch Mixed-type Wafer Defect Pattern Recognition
2024
会议录名称2024 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION, DATE
ISSN1530-1591
发表状态已发表
摘要As the technology node scales down to 5nm/3nm, the consequent difficulty has been widely lamented. The defects on the surface of wafers are much more prone to emerge during manufacturing than ever. What's worse, various single-type defect patterns may be coupled on a wafer and thus shape a mixed-type pattern. To improve yield during the design cycle, mixed-type wafer defect pattern recognition is required to perform to identify the failure mechanisms. Based on these issues, we revisit failure dies on wafer maps by treating them as point sets in two-dimensional space and propose a two-stage classification framework, PoLM. The challenge of noise reduction is considerably improved by first using an adaptive alpha-shapes algorithm to extract intricate geometric features of mixed-type patterns. Unlike sophisticated frameworks based on CNNs or Transformers, PoLM only completes classification within a point cloud cluster for aggregating and dispatching features. Furthermore, recognizing the remarkable success of large pre-trained foundation models (e.g., OpenAI's GPT-n series) in various visual tasks, this paper also introduces a training paradigm leveraging these pre-trained models and fine-tuning to improve the final recognition. Experiments demonstrate that our proposed framework significantly surpasses the state-of-the-art methodologies in classifying mixed-type wafer defect patterns.
会议名称27th Design, Automation and Test in Europe Conference and Exhibition (DATE)
出版地345 E 47TH ST, NEW YORK, NY 10017 USA
会议地点null,Valencia,SPAIN
会议日期MAR 25-27, 2024
URL查看原文
收录类别EI ; CPCI-S
语种英语
资助项目Shanghai Pujiang Program[22PJ1410400]
WOS研究方向Automation & Control Systems ; Computer Science ; Engineering
WOS类目Automation & Control Systems ; Computer Science, Interdisciplinary Applications ; Engineering, Industrial
WOS记录号WOS:001253778900205
出版者IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/357344
专题信息科学与技术学院
信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_耿浩
通讯作者Geng H(耿浩)
作者单位
1.ShanghaiTech University
2.Shenzhen Polytechnic
3.Zhejiang University
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Hongquan He,Guowen Kuang,Qi Sun,et al. PoLM: Point Cloud and Large Pre-trained Model Catch Mixed-type Wafer Defect Pattern Recognition[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2024.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Hongquan He]的文章
[Guowen Kuang]的文章
[Qi Sun]的文章
百度学术
百度学术中相似的文章
[Hongquan He]的文章
[Guowen Kuang]的文章
[Qi Sun]的文章
必应学术
必应学术中相似的文章
[Hongquan He]的文章
[Guowen Kuang]的文章
[Qi Sun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。