消息
×
loading..
Iterative Learning Embedded Composite Model Reference Adaptive Control for Off-Axis In-Situ Rotation in Nanorobotic Manipulation
2024
发表期刊IEEE CONTROL SYSTEMS LETTERS (IF:2.4[JCR-2023],2.4[5-Year])
ISSN2475-1456
EISSN2475-1456
卷号8页码:291-296
发表状态已发表
DOI10.1109/LCSYS.2023.3336545
摘要Realizing dexterous rotation under the microscope has been a great and yet not-well-addressed challenge in micro/nano-robotics. The limited field of view (FOV) of a microscope necessitates point-wise in-situ rotation, which refers to manipulating objects within their existing or natural environment. Though on-axis in-situ rotation has been investigated, off-axis in-situ rotation, which is more suitable to classical nano-robot setups, remains unexplored. The main difficulty facing here is the model uncertainties and visual disturbances that fail traditional control methods. In this letter, we propose a novel control scheme, namely the iterative learning embedded composite model reference adaptive control (IL-CMRAC), for efficient visual servo to solve the problem of in-situ off-axis rotation, by fully leveraging the repetitiveness nature of rotational motion. IL-CMRAC takes advantage of both offline learning and online adaptation to tackle the difficulties brought by uncertainties. Experiments demonstrated that the proposed method is capable of realizing high-precision off-axis in-situ rotation by average error within several microns. © 2017 IEEE.
关键词Nanorobotics indirect iterative learning control composite model reference adaptive control Iterative methods Rotation Two term control systems Uncertainty analysis Visual servoing Adaptation models Adaptive Control Composite model reference adaptive control Composite Modelling Convergence Indirect iterative learning control Iterative learning control Model-reference adaptive controls Nano-positioning Uncertainty
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20234815123932
EI主题词Model reference adaptive control
EI分类号461.1 Biomedical Engineering ; 731.1 Control Systems ; 731.5 Robotics ; 761 Nanotechnology ; 921.6 Numerical Methods ; 922.1 Probability Theory ; 931.1 Mechanics
原始文献类型Journal article (JA)
来源库IEEE
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348666
专题信息科学与技术学院
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_汪阳组
信息科学与技术学院_PI研究组_刘松组
通讯作者Liu, Song; Wang, Yang
作者单位
School of Information Science and Technology, ShanghaiTech University, Shanghai, China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Zhang, Heng,Fu, Xiang,Liu, Song,et al. Iterative Learning Embedded Composite Model Reference Adaptive Control for Off-Axis In-Situ Rotation in Nanorobotic Manipulation[J]. IEEE CONTROL SYSTEMS LETTERS,2024,8:291-296.
APA Zhang, Heng,Fu, Xiang,Liu, Song,&Wang, Yang.(2024).Iterative Learning Embedded Composite Model Reference Adaptive Control for Off-Axis In-Situ Rotation in Nanorobotic Manipulation.IEEE CONTROL SYSTEMS LETTERS,8,291-296.
MLA Zhang, Heng,et al."Iterative Learning Embedded Composite Model Reference Adaptive Control for Off-Axis In-Situ Rotation in Nanorobotic Manipulation".IEEE CONTROL SYSTEMS LETTERS 8(2024):291-296.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Heng]的文章
[Fu, Xiang]的文章
[Liu, Song]的文章
百度学术
百度学术中相似的文章
[Zhang, Heng]的文章
[Fu, Xiang]的文章
[Liu, Song]的文章
必应学术
必应学术中相似的文章
[Zhang, Heng]的文章
[Fu, Xiang]的文章
[Liu, Song]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。