| |||||||
ShanghaiTech University Knowledge Management System
Iterative Learning Embedded Composite Model Reference Adaptive Control for Off-Axis In-Situ Rotation in Nanorobotic Manipulation | |
2024 | |
发表期刊 | IEEE CONTROL SYSTEMS LETTERS (IF:2.4[JCR-2023],2.4[5-Year]) |
ISSN | 2475-1456 |
EISSN | 2475-1456 |
卷号 | 8页码:291-296 |
发表状态 | 已发表 |
DOI | 10.1109/LCSYS.2023.3336545 |
摘要 | Realizing dexterous rotation under the microscope has been a great and yet not-well-addressed challenge in micro/nano-robotics. The limited field of view (FOV) of a microscope necessitates point-wise in-situ rotation, which refers to manipulating objects within their existing or natural environment. Though on-axis in-situ rotation has been investigated, off-axis in-situ rotation, which is more suitable to classical nano-robot setups, remains unexplored. The main difficulty facing here is the model uncertainties and visual disturbances that fail traditional control methods. In this letter, we propose a novel control scheme, namely the iterative learning embedded composite model reference adaptive control (IL-CMRAC), for efficient visual servo to solve the problem of in-situ off-axis rotation, by fully leveraging the repetitiveness nature of rotational motion. IL-CMRAC takes advantage of both offline learning and online adaptation to tackle the difficulties brought by uncertainties. Experiments demonstrated that the proposed method is capable of realizing high-precision off-axis in-situ rotation by average error within several microns. © 2017 IEEE. |
关键词 | Nanorobotics indirect iterative learning control composite model reference adaptive control Iterative methods Rotation Two term control systems Uncertainty analysis Visual servoing Adaptation models Adaptive Control Composite model reference adaptive control Composite Modelling Convergence Indirect iterative learning control Iterative learning control Model-reference adaptive controls Nano-positioning Uncertainty |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20234815123932 |
EI主题词 | Model reference adaptive control |
EI分类号 | 461.1 Biomedical Engineering ; 731.1 Control Systems ; 731.5 Robotics ; 761 Nanotechnology ; 921.6 Numerical Methods ; 922.1 Probability Theory ; 931.1 Mechanics |
原始文献类型 | Journal article (JA) |
来源库 | IEEE |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348666 |
专题 | 信息科学与技术学院 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_汪阳组 信息科学与技术学院_PI研究组_刘松组 |
通讯作者 | Liu, Song; Wang, Yang |
作者单位 | School of Information Science and Technology, ShanghaiTech University, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Zhang, Heng,Fu, Xiang,Liu, Song,et al. Iterative Learning Embedded Composite Model Reference Adaptive Control for Off-Axis In-Situ Rotation in Nanorobotic Manipulation[J]. IEEE CONTROL SYSTEMS LETTERS,2024,8:291-296. |
APA | Zhang, Heng,Fu, Xiang,Liu, Song,&Wang, Yang.(2024).Iterative Learning Embedded Composite Model Reference Adaptive Control for Off-Axis In-Situ Rotation in Nanorobotic Manipulation.IEEE CONTROL SYSTEMS LETTERS,8,291-296. |
MLA | Zhang, Heng,et al."Iterative Learning Embedded Composite Model Reference Adaptive Control for Off-Axis In-Situ Rotation in Nanorobotic Manipulation".IEEE CONTROL SYSTEMS LETTERS 8(2024):291-296. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Zhang, Heng]的文章 |
[Fu, Xiang]的文章 |
[Liu, Song]的文章 |
百度学术 |
百度学术中相似的文章 |
[Zhang, Heng]的文章 |
[Fu, Xiang]的文章 |
[Liu, Song]的文章 |
必应学术 |
必应学术中相似的文章 |
[Zhang, Heng]的文章 |
[Fu, Xiang]的文章 |
[Liu, Song]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。