| |||||||
ShanghaiTech University Knowledge Management System
Seq2Neo: a comprehensive pipeline for cancer neoantigen im-munogenicity prediction | |
2022-09-16 | |
状态 | 已发表 |
摘要 | Neoantigens derived from somatic DNA alterations are ideal cancer-specific targets. In recent years, the combination therapy of PD-1/PD-L1 blockers and neoantigen vaccines shows clinical efficacy in original PD-1/PD-L1 blocker non-responders. However, not all somatic DNA mutations can result in immunogenicity in cancer cells, and efficient tools for predicting the immunogenicity of neoepitope are still urgently needed. Here we present the Seq2Neo pipeline, which provides a one-stop solution for neoepitope features prediction from raw sequencing data, and neoantigens derived from different types of genome DNA alterations, including point mutations, insertion deletions, and gene fusions are supported. Importantly a convolutional neural networks (CNN) based model has been trained to predict the immunogenicity of neoepitope. And this model shows improved performance compared with currently available tools in immunogenicity pre-diction in independent datasets. We anticipate that the Seq2Neo pipeline will become a useful tool in prediction of neoantigen immunogenicity and cancer immunotherapy. Seq2Neo is an open-source software under an academic free license (AFL) v3.0 and it is freely available at https://github.com/XSLiuLab/Seq2Neo. |
关键词 | immunogenicity immunotherapy bioinformatics pipelines deep learning |
语种 | 英语 |
DOI | 10.1101/2022.09.14.507872 |
相关网址 | 查看原文 |
出处 | bioRxiv |
收录类别 | PPRN.PPRN |
WOS记录号 | PPRN:14761505 |
WOS类目 | Computer Science, Interdisciplinary Applications |
资助项目 | Shanghai Science and Technology Commission["31771373","21ZR1442400"] |
文献类型 | 预印本 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348505 |
专题 | 生命科学与技术学院 生命科学与技术学院_PI研究组_刘雪松组 生命科学与技术学院_公共科研平台_高性能计算平台 生命科学与技术学院_硕士生 生命科学与技术学院_博士生 生命科学与技术学院_本科生 |
通讯作者 | Liu, X.-S. |
作者单位 | 1.ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai 201203, Peoples R China 2.Chinese Acad Sci, Shanghai Inst Biochem & Cell Biol, Shanghai, Peoples R China 3.Univ Chinese Acad Sci, Beijing, Peoples R China 4.Univ Montreal, Fac Medecine, Dept Medecine, Montreal, PQ, Canada |
推荐引用方式 GB/T 7714 | Diao, K.,Chen, J.,Wu, T.,et al. Seq2Neo: a comprehensive pipeline for cancer neoantigen im-munogenicity prediction. 2022. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Diao, K.]的文章 |
[Chen, J.]的文章 |
[Wu, T.]的文章 |
百度学术 |
百度学术中相似的文章 |
[Diao, K.]的文章 |
[Chen, J.]的文章 |
[Wu, T.]的文章 |
必应学术 |
必应学术中相似的文章 |
[Diao, K.]的文章 |
[Chen, J.]的文章 |
[Wu, T.]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。