消息
×
loading..
Seq2Neo: a comprehensive pipeline for cancer neoantigen im-munogenicity prediction
2022-09-16
状态已发表
摘要Neoantigens derived from somatic DNA alterations are ideal cancer-specific targets. In recent years, the combination therapy of PD-1/PD-L1 blockers and neoantigen vaccines shows clinical efficacy in original PD-1/PD-L1 blocker non-responders. However, not all somatic DNA mutations can result in immunogenicity in cancer cells, and efficient tools for predicting the immunogenicity of neoepitope are still urgently needed. Here we present the Seq2Neo pipeline, which provides a one-stop solution for neoepitope features prediction from raw sequencing data, and neoantigens derived from different types of genome DNA alterations, including point mutations, insertion deletions, and gene fusions are supported. Importantly a convolutional neural networks (CNN) based model has been trained to predict the immunogenicity of neoepitope. And this model shows improved performance compared with currently available tools in immunogenicity pre-diction in independent datasets. We anticipate that the Seq2Neo pipeline will become a useful tool in prediction of neoantigen immunogenicity and cancer immunotherapy. Seq2Neo is an open-source software under an academic free license (AFL) v3.0 and it is freely available at https://github.com/XSLiuLab/Seq2Neo.
关键词immunogenicity immunotherapy bioinformatics pipelines deep learning
语种英语
DOI10.1101/2022.09.14.507872
相关网址查看原文
出处bioRxiv
收录类别PPRN.PPRN
WOS记录号PPRN:14761505
WOS类目Computer Science, Interdisciplinary Applications
资助项目Shanghai Science and Technology Commission["31771373","21ZR1442400"]
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348505
专题生命科学与技术学院
生命科学与技术学院_PI研究组_刘雪松组
生命科学与技术学院_公共科研平台_高性能计算平台
生命科学与技术学院_硕士生
生命科学与技术学院_博士生
生命科学与技术学院_本科生
通讯作者Liu, X.-S.
作者单位
1.ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai 201203, Peoples R China
2.Chinese Acad Sci, Shanghai Inst Biochem & Cell Biol, Shanghai, Peoples R China
3.Univ Chinese Acad Sci, Beijing, Peoples R China
4.Univ Montreal, Fac Medecine, Dept Medecine, Montreal, PQ, Canada
推荐引用方式
GB/T 7714
Diao, K.,Chen, J.,Wu, T.,et al. Seq2Neo: a comprehensive pipeline for cancer neoantigen im-munogenicity prediction. 2022.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Diao, K.]的文章
[Chen, J.]的文章
[Wu, T.]的文章
百度学术
百度学术中相似的文章
[Diao, K.]的文章
[Chen, J.]的文章
[Wu, T.]的文章
必应学术
必应学术中相似的文章
[Diao, K.]的文章
[Chen, J.]的文章
[Wu, T.]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1101@2022.09.14.507872.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。