SCPNet: Semantic Scene Completion on Point Cloud
2023
会议录名称2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR)
ISSN1063-6919
卷号2023-June
页码17642-17651
发表状态已发表
DOI10.1109/CVPR52729.2023.01692
摘要Training deep models for semantic scene completion (SSC) is challenging due to the sparse and incomplete input, a large quantity of objects of diverse scales as well as the inherent label noise for moving objects. To address the above-mentioned problems, we propose the following three solutions: 1) Redesigning the completion sub-network. We design a novel completion sub-network, which consists of several Multi-Path Blocks (MPBs) to aggregate multi-scale features and is free from the lossy downsampling operations. 2) Distilling rich knowledge from the multi-frame model. We design a novel knowledge distillation objective, dubbed Dense-to-Sparse Knowledge Distillation (DSKD). It transfers the dense, relation-based semantic knowledge from the multi-frame teacher to the single-frame student, significantly improving the representation learning of the single-frame model. 3) Completion label rectification. We propose a simple yet effective label rectification strategy, which uses off-the-shelf panoptic segmentation labels to remove the traces of dynamic objects in completion labels, greatly improving the performance of deep models especially for those moving objects. Extensive experiments are conducted in two public SSC benchmarks, i.e., SemanticKITTI and SemanticPOSS. Our SCPNet ranks 1st on SemanticKITTI semantic scene completion challenge and surpasses the competitive S3CNet [3] by 7.2 mIoU. SCPNet also outperforms previous completion algorithms on the SemanticPOSS dataset. Besides, our method also achieves competitive results on SemanticKITTI semantic segmentation tasks, showing that knowledge learned in the scene completion is beneficial to the segmentation task.
会议录编者/会议主办者Amazon Science ; Ant Research ; Cruise ; et al. ; Google ; Lambda
会议名称IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
出版地10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
会议地点null,Vancouver,CANADA
会议日期JUN 17-24, 2023
URL查看原文
收录类别CPCI-S ; EI
语种英语
资助项目National Key R&D Program of China[2022ZD0160100] ; Shanghai Committee of Science and Technology[21DZ1100100]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:001062531301091
出版者IEEE COMPUTER SOC
EI入藏号20234114867448
原始文献类型Conference article (CA)
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/346494
专题信息科学与技术学院_PI研究组_马月昕
通讯作者Hou, Yuenan
作者单位
1.Shanghai AI Lab, Shanghai, Peoples R China
2.East China Normal Univ, Shanghai, Peoples R China
3.Chinese Univ Hong Kong, Hong Kong, Peoples R China
4.ShanghaiTech Univ, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Xia, Zhaoyang,Liu, Youquan,Li, Xin,et al. SCPNet: Semantic Scene Completion on Point Cloud[C]//Amazon Science, Ant Research, Cruise, et al., Google, Lambda. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE COMPUTER SOC,2023:17642-17651.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xia, Zhaoyang]的文章
[Liu, Youquan]的文章
[Li, Xin]的文章
百度学术
百度学术中相似的文章
[Xia, Zhaoyang]的文章
[Liu, Youquan]的文章
[Li, Xin]的文章
必应学术
必应学术中相似的文章
[Xia, Zhaoyang]的文章
[Liu, Youquan]的文章
[Li, Xin]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@CVPR52729.2023.01692.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。