ShanghaiTech University Knowledge Management System
SCPNet: Semantic Scene Completion on Point Cloud | |
2023 | |
会议录名称 | 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR)
![]() |
ISSN | 1063-6919 |
卷号 | 2023-June |
页码 | 17642-17651 |
发表状态 | 已发表 |
DOI | 10.1109/CVPR52729.2023.01692 |
摘要 | Training deep models for semantic scene completion (SSC) is challenging due to the sparse and incomplete input, a large quantity of objects of diverse scales as well as the inherent label noise for moving objects. To address the above-mentioned problems, we propose the following three solutions: 1) Redesigning the completion sub-network. We design a novel completion sub-network, which consists of several Multi-Path Blocks (MPBs) to aggregate multi-scale features and is free from the lossy downsampling operations. 2) Distilling rich knowledge from the multi-frame model. We design a novel knowledge distillation objective, dubbed Dense-to-Sparse Knowledge Distillation (DSKD). It transfers the dense, relation-based semantic knowledge from the multi-frame teacher to the single-frame student, significantly improving the representation learning of the single-frame model. 3) Completion label rectification. We propose a simple yet effective label rectification strategy, which uses off-the-shelf panoptic segmentation labels to remove the traces of dynamic objects in completion labels, greatly improving the performance of deep models especially for those moving objects. Extensive experiments are conducted in two public SSC benchmarks, i.e., SemanticKITTI and SemanticPOSS. Our SCPNet ranks 1st on SemanticKITTI semantic scene completion challenge and surpasses the competitive S3CNet [3] by 7.2 mIoU. SCPNet also outperforms previous completion algorithms on the SemanticPOSS dataset. Besides, our method also achieves competitive results on SemanticKITTI semantic segmentation tasks, showing that knowledge learned in the scene completion is beneficial to the segmentation task. |
会议录编者/会议主办者 | Amazon Science ; Ant Research ; Cruise ; et al. ; Google ; Lambda |
会议名称 | IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) |
出版地 | 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA |
会议地点 | null,Vancouver,CANADA |
会议日期 | JUN 17-24, 2023 |
URL | 查看原文 |
收录类别 | CPCI-S ; EI |
语种 | 英语 |
资助项目 | National Key R&D Program of China[2022ZD0160100] ; Shanghai Committee of Science and Technology[21DZ1100100] |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence |
WOS记录号 | WOS:001062531301091 |
出版者 | IEEE COMPUTER SOC |
EI入藏号 | 20234114867448 |
原始文献类型 | Conference article (CA) |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/346494 |
专题 | 信息科学与技术学院_PI研究组_马月昕 |
通讯作者 | Hou, Yuenan |
作者单位 | 1.Shanghai AI Lab, Shanghai, Peoples R China 2.East China Normal Univ, Shanghai, Peoples R China 3.Chinese Univ Hong Kong, Hong Kong, Peoples R China 4.ShanghaiTech Univ, Shanghai, Peoples R China |
推荐引用方式 GB/T 7714 | Xia, Zhaoyang,Liu, Youquan,Li, Xin,et al. SCPNet: Semantic Scene Completion on Point Cloud[C]//Amazon Science, Ant Research, Cruise, et al., Google, Lambda. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE COMPUTER SOC,2023:17642-17651. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。