ShanghaiTech University Knowledge Management System
Kernel-Based Methods for Solving Time-Dependent Advection-Diffusion Equations on Manifolds | |
2023-01 | |
发表期刊 | JOURNAL OF SCIENTIFIC COMPUTING (IF:2.8[JCR-2023],2.7[5-Year]) |
ISSN | 0885-7474 |
EISSN | 1573-7691 |
卷号 | 94期号:1 |
DOI | 10.1007/s10915-022-02045-w |
摘要 | In this paper, we extend the class of kernel methods, the so-called diffusion maps (DM) and ghost point diffusion maps (GPDM), to solve the time-dependent advection-diffusion PDE on unknown smooth manifolds without and with boundaries. The core idea is to directly approximate the spatial components of the differential operator on the manifold with a local integral operator and combine it with the standard implicit time difference scheme. When the manifold has a boundary, a simplified version of the GPDM approach is used to overcome the bias of the integral approximation near the boundary. The Monte-Carlo discretization of the integral operator over the point cloud data gives rise to a mesh-free formulation that is natural for randomly distributed points, even when the manifold is embedded in high-dimensional ambient space. Here, we establish the convergence of the proposed solver on appropriate topologies, depending on the distribution of point cloud data and boundary type. We provide numerical results to validate the convergence results on various examples that involve simple geometry and an unknown manifold. © 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. |
关键词 | Advection Diffusion Mesh generation Diffusion maps Ghost point diffusion map Local kernel Mesh-free PDE solver Meshfree Parabolic PDE on manifold Parabolic PDEs PDE solvers Time-dependent advection |
URL | 查看原文 |
收录类别 | EI ; SCOPUS |
语种 | 英语 |
出版者 | Springer |
EI入藏号 | 20224713159742 |
EI主题词 | Mathematical operators |
EI分类号 | 723.5 Computer Applications ; 921.4 Combinatorial Mathematics, Includes Graph Theory, Set Theory |
原始文献类型 | Journal article (JA) |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/251774 |
专题 | 数学科学研究所_PI研究组(P)_蒋诗晓组 |
通讯作者 | Jiang, Shixiao W. |
作者单位 | 1.Department of Mathematics, The Pennsylvania State University, University Park; PA; 16802, United States; 2.Institute of Mathematical Sciences, ShanghaiTech University, Shanghai; 201210, China; 3.Department of Mathematics, Department of Meteorology and Atmospheric Science, Institute for Computational and Data Sciences, The Pennsylvania State University, University Park; PA; 16802, United States |
通讯作者单位 | 数学科学研究所 |
推荐引用方式 GB/T 7714 | Yan, Qile,Jiang, Shixiao W.,Harlim, John. Kernel-Based Methods for Solving Time-Dependent Advection-Diffusion Equations on Manifolds[J]. JOURNAL OF SCIENTIFIC COMPUTING,2023,94(1). |
APA | Yan, Qile,Jiang, Shixiao W.,&Harlim, John.(2023).Kernel-Based Methods for Solving Time-Dependent Advection-Diffusion Equations on Manifolds.JOURNAL OF SCIENTIFIC COMPUTING,94(1). |
MLA | Yan, Qile,et al."Kernel-Based Methods for Solving Time-Dependent Advection-Diffusion Equations on Manifolds".JOURNAL OF SCIENTIFIC COMPUTING 94.1(2023). |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。