Kernel-Based Methods for Solving Time-Dependent Advection-Diffusion Equations on Manifolds
2023-01
发表期刊JOURNAL OF SCIENTIFIC COMPUTING (IF:2.8[JCR-2023],2.7[5-Year])
ISSN0885-7474
EISSN1573-7691
卷号94期号:1
DOI10.1007/s10915-022-02045-w
摘要In this paper, we extend the class of kernel methods, the so-called diffusion maps (DM) and ghost point diffusion maps (GPDM), to solve the time-dependent advection-diffusion PDE on unknown smooth manifolds without and with boundaries. The core idea is to directly approximate the spatial components of the differential operator on the manifold with a local integral operator and combine it with the standard implicit time difference scheme. When the manifold has a boundary, a simplified version of the GPDM approach is used to overcome the bias of the integral approximation near the boundary. The Monte-Carlo discretization of the integral operator over the point cloud data gives rise to a mesh-free formulation that is natural for randomly distributed points, even when the manifold is embedded in high-dimensional ambient space. Here, we establish the convergence of the proposed solver on appropriate topologies, depending on the distribution of point cloud data and boundary type. We provide numerical results to validate the convergence results on various examples that involve simple geometry and an unknown manifold. © 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
关键词Advection Diffusion Mesh generation Diffusion maps Ghost point diffusion map Local kernel Mesh-free PDE solver Meshfree Parabolic PDE on manifold Parabolic PDEs PDE solvers Time-dependent advection
URL查看原文
收录类别EI ; SCOPUS
语种英语
出版者Springer
EI入藏号20224713159742
EI主题词Mathematical operators
EI分类号723.5 Computer Applications ; 921.4 Combinatorial Mathematics, Includes Graph Theory, Set Theory
原始文献类型Journal article (JA)
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/251774
专题数学科学研究所_PI研究组(P)_蒋诗晓组
通讯作者Jiang, Shixiao W.
作者单位
1.Department of Mathematics, The Pennsylvania State University, University Park; PA; 16802, United States;
2.Institute of Mathematical Sciences, ShanghaiTech University, Shanghai; 201210, China;
3.Department of Mathematics, Department of Meteorology and Atmospheric Science, Institute for Computational and Data Sciences, The Pennsylvania State University, University Park; PA; 16802, United States
通讯作者单位数学科学研究所
推荐引用方式
GB/T 7714
Yan, Qile,Jiang, Shixiao W.,Harlim, John. Kernel-Based Methods for Solving Time-Dependent Advection-Diffusion Equations on Manifolds[J]. JOURNAL OF SCIENTIFIC COMPUTING,2023,94(1).
APA Yan, Qile,Jiang, Shixiao W.,&Harlim, John.(2023).Kernel-Based Methods for Solving Time-Dependent Advection-Diffusion Equations on Manifolds.JOURNAL OF SCIENTIFIC COMPUTING,94(1).
MLA Yan, Qile,et al."Kernel-Based Methods for Solving Time-Dependent Advection-Diffusion Equations on Manifolds".JOURNAL OF SCIENTIFIC COMPUTING 94.1(2023).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yan, Qile]的文章
[Jiang, Shixiao W.]的文章
[Harlim, John]的文章
百度学术
百度学术中相似的文章
[Yan, Qile]的文章
[Jiang, Shixiao W.]的文章
[Harlim, John]的文章
必应学术
必应学术中相似的文章
[Yan, Qile]的文章
[Jiang, Shixiao W.]的文章
[Harlim, John]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1007@s10915-022-02045-w.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。