ShanghaiTech University Knowledge Management System
Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism | |
2020-08-27 | |
发表期刊 | JOURNAL OF MEDICINAL CHEMISTRY (IF:6.8[JCR-2023],7.1[5-Year]) |
ISSN | 0022-2623 |
EISSN | 1520-4804 |
卷号 | 63期号:16页码:8749-8760 |
DOI | 10.1021/acs.jmedchem.9b00959 |
摘要 | Hunting for chemicals with favorable pharmacological, toxicological, and pharmacokinetic properties remains a formidable challenge for drug discovery. Deep learning provides us with powerful tools to build predictive models that are appropriate for the rising amounts of data, but the gap between what these neural networks learn and what human beings can comprehend is growing. Moreover, this gap may induce distrust and restrict deep learning applications in practice. Here, we introduce a new graph neural network architecture called Attentive FP for molecular representation that uses a graph attention mechanism to learn from relevant drug discovery data sets. We demonstrate that Attentive FP achieves state-of-the-art predictive performances on a variety of data sets and that what it learns is interpretable. The feature visualization for Attentive FP suggests that it automatically learns nonlocal intramolecular interactions from specified tasks, which can help us gain chemical insights directly from data beyond human perception. |
收录类别 | SCIE |
语种 | 英语 |
WOS研究方向 | Pharmacology & Pharmacy |
WOS类目 | Chemistry, Medicinal |
WOS记录号 | WOS:000566757500009 |
出版者 | AMER CHEMICAL SOC |
原始文献类型 | Article |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/243210 |
专题 | 生命科学与技术学院_博士生 生命科学与技术学院_特聘教授组_陈凯先组 免疫化学研究所_特聘教授组_蒋华良组 |
通讯作者 | Jiang, Hualiang; Zheng, Mingyue |
作者单位 | 1.ShanghaiTech Univ, Shanghai Inst Adv Immunochem Studies, Shanghai 200031, Peoples R China; 2.ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai 200031, Peoples R China; 3.Chinese Acad Sci, Drug Discovery & Design Ctr, State Key Lab Drug Res, Shanghai Inst Mat Med, 555 Zuchongzhi Rd, Shanghai 201203, Peoples R China; 4.Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China |
第一作者单位 | 免疫化学研究所; 生命科学与技术学院 |
通讯作者单位 | 免疫化学研究所; 生命科学与技术学院 |
第一作者的第一单位 | 免疫化学研究所 |
推荐引用方式 GB/T 7714 | Xiong, Zhaoping,Wang, Dingyan,Liu, Xiaohong,et al. Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism[J]. JOURNAL OF MEDICINAL CHEMISTRY,2020,63(16):8749-8760. |
APA | Xiong, Zhaoping.,Wang, Dingyan.,Liu, Xiaohong.,Zhong, Feisheng.,Wan, Xiaozhe.,...&Zheng, Mingyue.(2020).Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism.JOURNAL OF MEDICINAL CHEMISTRY,63(16),8749-8760. |
MLA | Xiong, Zhaoping,et al."Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism".JOURNAL OF MEDICINAL CHEMISTRY 63.16(2020):8749-8760. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。