Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism
2020-08-27
发表期刊JOURNAL OF MEDICINAL CHEMISTRY (IF:6.8[JCR-2023],7.1[5-Year])
ISSN0022-2623
EISSN1520-4804
卷号63期号:16页码:8749-8760
DOI10.1021/acs.jmedchem.9b00959
摘要Hunting for chemicals with favorable pharmacological, toxicological, and pharmacokinetic properties remains a formidable challenge for drug discovery. Deep learning provides us with powerful tools to build predictive models that are appropriate for the rising amounts of data, but the gap between what these neural networks learn and what human beings can comprehend is growing. Moreover, this gap may induce distrust and restrict deep learning applications in practice. Here, we introduce a new graph neural network architecture called Attentive FP for molecular representation that uses a graph attention mechanism to learn from relevant drug discovery data sets. We demonstrate that Attentive FP achieves state-of-the-art predictive performances on a variety of data sets and that what it learns is interpretable. The feature visualization for Attentive FP suggests that it automatically learns nonlocal intramolecular interactions from specified tasks, which can help us gain chemical insights directly from data beyond human perception.
收录类别SCIE
语种英语
WOS研究方向Pharmacology & Pharmacy
WOS类目Chemistry, Medicinal
WOS记录号WOS:000566757500009
出版者AMER CHEMICAL SOC
原始文献类型Article
引用统计
被引频次:584[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/243210
专题生命科学与技术学院_博士生
生命科学与技术学院_特聘教授组_陈凯先组
免疫化学研究所_特聘教授组_蒋华良组
通讯作者Jiang, Hualiang; Zheng, Mingyue
作者单位
1.ShanghaiTech Univ, Shanghai Inst Adv Immunochem Studies, Shanghai 200031, Peoples R China;
2.ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai 200031, Peoples R China;
3.Chinese Acad Sci, Drug Discovery & Design Ctr, State Key Lab Drug Res, Shanghai Inst Mat Med, 555 Zuchongzhi Rd, Shanghai 201203, Peoples R China;
4.Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
第一作者单位免疫化学研究所;  生命科学与技术学院
通讯作者单位免疫化学研究所;  生命科学与技术学院
第一作者的第一单位免疫化学研究所
推荐引用方式
GB/T 7714
Xiong, Zhaoping,Wang, Dingyan,Liu, Xiaohong,et al. Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism[J]. JOURNAL OF MEDICINAL CHEMISTRY,2020,63(16):8749-8760.
APA Xiong, Zhaoping.,Wang, Dingyan.,Liu, Xiaohong.,Zhong, Feisheng.,Wan, Xiaozhe.,...&Zheng, Mingyue.(2020).Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism.JOURNAL OF MEDICINAL CHEMISTRY,63(16),8749-8760.
MLA Xiong, Zhaoping,et al."Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism".JOURNAL OF MEDICINAL CHEMISTRY 63.16(2020):8749-8760.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xiong, Zhaoping]的文章
[Wang, Dingyan]的文章
[Liu, Xiaohong]的文章
百度学术
百度学术中相似的文章
[Xiong, Zhaoping]的文章
[Wang, Dingyan]的文章
[Liu, Xiaohong]的文章
必应学术
必应学术中相似的文章
[Xiong, Zhaoping]的文章
[Wang, Dingyan]的文章
[Liu, Xiaohong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。