Ghost Point Diffusion Maps for Solving Elliptic PDEs on Manifolds with Classical Boundary Conditions
2021-12
发表期刊COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS
ISSN0010-3640
EISSN1097-0312
发表状态已发表
DOI10.1002/cpa.22035
摘要In this paper, we extend the class of kernel methods, the so-called diffusion maps (DM) and its local kernel variants to approximate second-order differential operators defined on smooth manifolds with boundaries that naturally arise in elliptic PDE models. To achieve this goal, we introduce the ghost point diffusion maps (GPDM) estimator on an extended manifold, identified by the set of point clouds on the unknown original manifold together with a set of ghost points, specified along the estimated tangential direction at the sampled points on the boundary. The resulting GPDM estimator restricts the standard DM matrix to a set of extrapolation equations that estimates the function values at the ghost points. This adjustment is analogous to the classical ghost point method in a finite-difference scheme for solving PDEs on flat domains. As opposed to the classical DM, which diverges near the boundary, the proposed GPDM estimator converges pointwise even near the boundary. Applying the consistent GPDM estimator to solve well-posed elliptic PDEs with classical boundary conditions (Dirichlet, Neumann, and Robin), we establish the convergence of the approximate solution under appropriate smoothness assumptions. We numerically validate the proposed mesh-free PDE solver on various problems defined on simple submanifolds embedded in Euclidean spaces as well as on an unknown manifold. Numerically, we also found that the GPDM is more accurate compared to DM in solving elliptic eigenvalue problems on bounded smooth manifolds. (c) 2021 Wiley Periodicals LLC.
URL查看原文
收录类别SCI ; SCIE ; SCOPUS
语种英语
资助项目National Science Foundation[DMS-1854299]
WOS研究方向Mathematics
WOS类目Mathematics, Applied ; Mathematics
WOS记录号WOS:000733178900001
出版者WILEY
Scopus 记录号2-s2.0-85121552110
来源库Scopus
引用统计
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/145762
专题数学科学研究所_PI研究组(P)_蒋诗晓组
通讯作者Jiang, Shixiao Willing
作者单位
1.ShanghaiTech Univ, Inst Math Sci, Shanghai 201210, Peoples R China
2.Penn State Univ, Dept Math, Dept Meteorol & Atmospher Sci, Inst Computat & Data Sci, University Pk, PA 16802 USA
第一作者单位数学科学研究所
通讯作者单位数学科学研究所
第一作者的第一单位数学科学研究所
推荐引用方式
GB/T 7714
Jiang, Shixiao Willing,Harlim, John. Ghost Point Diffusion Maps for Solving Elliptic PDEs on Manifolds with Classical Boundary Conditions[J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS,2021.
APA Jiang, Shixiao Willing,&Harlim, John.(2021).Ghost Point Diffusion Maps for Solving Elliptic PDEs on Manifolds with Classical Boundary Conditions.COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS.
MLA Jiang, Shixiao Willing,et al."Ghost Point Diffusion Maps for Solving Elliptic PDEs on Manifolds with Classical Boundary Conditions".COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS (2021).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Jiang, Shixiao Willing]的文章
[Harlim, John]的文章
百度学术
百度学术中相似的文章
[Jiang, Shixiao Willing]的文章
[Harlim, John]的文章
必应学术
必应学术中相似的文章
[Jiang, Shixiao Willing]的文章
[Harlim, John]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1002@cpa.22035.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。