ShanghaiTech University Knowledge Management System
Ghost Point Diffusion Maps for Solving Elliptic PDEs on Manifolds with Classical Boundary Conditions | |
2021-12 | |
发表期刊 | COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS |
ISSN | 0010-3640 |
EISSN | 1097-0312 |
发表状态 | 已发表 |
DOI | 10.1002/cpa.22035 |
摘要 | In this paper, we extend the class of kernel methods, the so-called diffusion maps (DM) and its local kernel variants to approximate second-order differential operators defined on smooth manifolds with boundaries that naturally arise in elliptic PDE models. To achieve this goal, we introduce the ghost point diffusion maps (GPDM) estimator on an extended manifold, identified by the set of point clouds on the unknown original manifold together with a set of ghost points, specified along the estimated tangential direction at the sampled points on the boundary. The resulting GPDM estimator restricts the standard DM matrix to a set of extrapolation equations that estimates the function values at the ghost points. This adjustment is analogous to the classical ghost point method in a finite-difference scheme for solving PDEs on flat domains. As opposed to the classical DM, which diverges near the boundary, the proposed GPDM estimator converges pointwise even near the boundary. Applying the consistent GPDM estimator to solve well-posed elliptic PDEs with classical boundary conditions (Dirichlet, Neumann, and Robin), we establish the convergence of the approximate solution under appropriate smoothness assumptions. We numerically validate the proposed mesh-free PDE solver on various problems defined on simple submanifolds embedded in Euclidean spaces as well as on an unknown manifold. Numerically, we also found that the GPDM is more accurate compared to DM in solving elliptic eigenvalue problems on bounded smooth manifolds. (c) 2021 Wiley Periodicals LLC. |
URL | 查看原文 |
收录类别 | SCI ; SCIE ; SCOPUS |
语种 | 英语 |
资助项目 | National Science Foundation[DMS-1854299] |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics, Applied ; Mathematics |
WOS记录号 | WOS:000733178900001 |
出版者 | WILEY |
Scopus 记录号 | 2-s2.0-85121552110 |
来源库 | Scopus |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/145762 |
专题 | 数学科学研究所_PI研究组(P)_蒋诗晓组 |
通讯作者 | Jiang, Shixiao Willing |
作者单位 | 1.ShanghaiTech Univ, Inst Math Sci, Shanghai 201210, Peoples R China 2.Penn State Univ, Dept Math, Dept Meteorol & Atmospher Sci, Inst Computat & Data Sci, University Pk, PA 16802 USA |
第一作者单位 | 数学科学研究所 |
通讯作者单位 | 数学科学研究所 |
第一作者的第一单位 | 数学科学研究所 |
推荐引用方式 GB/T 7714 | Jiang, Shixiao Willing,Harlim, John. Ghost Point Diffusion Maps for Solving Elliptic PDEs on Manifolds with Classical Boundary Conditions[J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS,2021. |
APA | Jiang, Shixiao Willing,&Harlim, John.(2021).Ghost Point Diffusion Maps for Solving Elliptic PDEs on Manifolds with Classical Boundary Conditions.COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS. |
MLA | Jiang, Shixiao Willing,et al."Ghost Point Diffusion Maps for Solving Elliptic PDEs on Manifolds with Classical Boundary Conditions".COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS (2021). |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Jiang, Shixiao Willing]的文章 |
[Harlim, John]的文章 |
百度学术 |
百度学术中相似的文章 |
[Jiang, Shixiao Willing]的文章 |
[Harlim, John]的文章 |
必应学术 |
必应学术中相似的文章 |
[Jiang, Shixiao Willing]的文章 |
[Harlim, John]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。