Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based Perception
2022-10-01
发表期刊IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (IF:20.8[JCR-2023],22.2[5-Year])
ISSN0162-8828
EISSN1939-3539
卷号44期号:10
发表状态已发表
DOI10.1109/TPAMI.2021.3098789
摘要State-of-the-art methods for driving-scene LiDAR-based perception often project the point clouds to 2D space and then process them via 2D convolution. Although this corporation shows the competitiveness in the point cloud, it inevitably alters and abandons the 3D topology and geometric relations. A natural remedy is to utilize the 3D voxelization and 3D convolution network. However, we found that in the outdoor point cloud, the improvement obtained in this way is quite limited. An important reason is the property of the outdoor point cloud, namely sparsity and varying density. Motivated by this investigation, we propose a new framework for the outdoor LiDAR segmentation, where cylindrical partition and asymmetrical 3D convolution networks are designed to explore the 3D geometric pattern while maintaining these inherent properties. The proposed model acts as a backbone and the learned features from this model can be used for downstream tasks. In this paper, we benchmark our model on three tasks. For semantic segmentation, our method achieves the state-of-the-art in the leaderboard of SemanticKITTI, and significantly outperforms existing methods on nuScenes and A2D2 dataset. Furthermore, the proposed 3D framework also shows strong performance and good generalization on LiDAR panoptic segmentation and LiDAR 3D detection. IEEE
关键词Convolution Semantics 2-D convolution Geometric patterns Geometric relations Lidar segmentations Semantic segmentation State of the art State-of-the-art methods Voxelization
URL查看原文
收录类别SCI ; EI ; SCIE
语种英语
资助项目GRF through the Research Grants Council of Hong Kong["14208417","14207319","14203518","ITS/431/18FX"] ; CUHK[TS1712093] ; Shanghai Committee of Science and Technology, China[20DZ1100800]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000853875300070
出版者IEEE Computer Society
EI入藏号20213210745098
EI主题词Optical radar
EI分类号716.1 Information Theory and Signal Processing ; 716.2 Radar Systems and Equipment
原始文献类型Article in Press
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/135701
专题信息科学与技术学院_PI研究组_马月昕
通讯作者Ma, Yuexin
作者单位
1.Chinese Univ Hong Kong, Hong Kong, Peoples R China
2.SenseTime Res, Hong Kong, Peoples R China
3.Nanyang Technol Univ, Singapore 639798, Singapore
4.Peking Univ, Beijing 100871, Peoples R China
5.ShanghaiTech Univ, Shanghai Engn Res Ctr Intelligent Vis & Imaging, Shanghai 201210, Peoples R China
6.Univ Kentucky, Lexington, KY 40506 USA
通讯作者单位上海科技大学
推荐引用方式
GB/T 7714
Zhu, Xinge,Zhou, Hui,Wang, Tai,et al. Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based Perception[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2022,44(10).
APA Zhu, Xinge.,Zhou, Hui.,Wang, Tai.,Hong, Fangzhou.,Li, Wei.,...&Lin, Dahua.(2022).Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based Perception.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,44(10).
MLA Zhu, Xinge,et al."Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based Perception".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 44.10(2022).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhu, Xinge]的文章
[Zhou, Hui]的文章
[Wang, Tai]的文章
百度学术
百度学术中相似的文章
[Zhu, Xinge]的文章
[Zhou, Hui]的文章
[Wang, Tai]的文章
必应学术
必应学术中相似的文章
[Zhu, Xinge]的文章
[Zhou, Hui]的文章
[Wang, Tai]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@TPAMI.2021.3098789.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。