| |||||||
ShanghaiTech University Knowledge Management System
DeepPhospho accelerates DIA phosphoproteome profiling through in silico library generation | |
2021 | |
发表期刊 | NATURE COMMUNICATIONS (IF:14.7[JCR-2023],16.1[5-Year]) |
ISSN | 2041-1723 |
EISSN | 2041-1723 |
卷号 | 12期号:1页码:6685 |
发表状态 | 已发表 |
DOI | 10.1038/s41467-021-26979-1 |
摘要 | Phosphoproteomics integrating data-independent acquisition (DIA) enables deep phosphoproteome profiling with improved quantification reproducibility and accuracy compared to data-dependent acquisition (DDA)-based phosphoproteomics. DIA data mining heavily relies on a spectral library that in most cases is built on DDA analysis of the same sample. Construction of this project-specific DDA library impairs the analytical throughput, limits the proteome coverage, and increases the sample size for DIA phosphoproteomics. Herein we introduce a deep neural network, DeepPhospho, which conceptually differs from previous deep learning models to achieve accurate predictions of LC-MS/MS data for phosphopeptides. By leveraging in silico libraries generated by DeepPhospho, we establish a DIA workflow for phosphoproteome profiling which involves DIA data acquisition and data mining with DeepPhospho predicted libraries, thus circumventing the need of DDA library construction. Our DeepPhospho-empowered workflow substantially expands the phosphoproteome coverage while maintaining high quantification performance, which leads to the discovery of more signaling pathways and regulated kinases in an EGF signaling study than the DDA library-based approach. DeepPhospho is provided as a web server as well as an offline app to facilitate user access to model training, predictions and library generation. |
关键词 | Proteome informatics Machine learning Phosphorylation Proteomics |
学科门类 | 理学::生物学 ; 工学::计算机科学与技术(可授工学、理学学位) |
URL | 查看原文 |
收录类别 | SCI ; SCIE |
语种 | 英语 |
WOS研究方向 | Science & Technology - Other Topics |
WOS类目 | Multidisciplinary Sciences |
WOS记录号 | WOS:000720682300009 |
出版者 | NATURE PORTFOLIO |
EI入藏号 | 9993795 |
原始文献类型 | Article |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/134164 |
专题 | 生命科学与技术学院_博士生 信息科学与技术学院_PI研究组_何旭明组 iHuman研究所_PI研究组_水雯箐组 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 |
通讯作者 | He, Xuming; Shui, Wenqing |
作者单位 | 1.iHuman Institute, ShanghaiTech University, Shanghai, 201210, China 2.School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China 3.University of Chinese Academy of Sciences, Beijing, 100049, China 4.School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China 5.Shanghai Engineering Research Center of Intelligent Vision and Imaging, Shanghai, 201210, China |
第一作者单位 | iHuman研究所; 生命科学与技术学院 |
通讯作者单位 | 信息科学与技术学院; iHuman研究所; 生命科学与技术学院 |
第一作者的第一单位 | iHuman研究所 |
推荐引用方式 GB/T 7714 | Lou, Ronghui,Liu, Weizhen,Li, Rongjie,et al. DeepPhospho accelerates DIA phosphoproteome profiling through in silico library generation[J]. NATURE COMMUNICATIONS,2021,12(1):6685. |
APA | Lou, Ronghui,Liu, Weizhen,Li, Rongjie,Li, Shanshan,He, Xuming,&Shui, Wenqing.(2021).DeepPhospho accelerates DIA phosphoproteome profiling through in silico library generation.NATURE COMMUNICATIONS,12(1),6685. |
MLA | Lou, Ronghui,et al."DeepPhospho accelerates DIA phosphoproteome profiling through in silico library generation".NATURE COMMUNICATIONS 12.1(2021):6685. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。