| |||||||
ShanghaiTech University Knowledge Management System
Rotation Estimation for Omni-directional Cameras Using Sinusoid Fitting | |
2021-09 | |
发表期刊 | JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS (IF:3.1[JCR-2023],3.2[5-Year]) |
ISSN | 0921-0296 |
EISSN | 1573-0409 |
卷号 | 103期号:1 |
发表状态 | 已发表 |
DOI | 10.1007/s10846-021-01455-6 |
摘要 | Rotation estimation is important for localization, mapping and navigation in robotic applications. A novel rotation estimation method for geometric vision of omni-directional cameras is proposed in this paper. Firstly, we formulate the rotation estimation as a sinusoid fitting problem on the basis of column-wise and row-wise shifts in omni-directional images. Then the method is implemented in two steps: motion vector extraction and sinusoid fitting. We are extracting motion vectors by finding pixel deviations in row- and column-directions as well as image rotation for each sub-image by Fourier-Mellin transform (FMT) or by optical flow. Then we fit these column-wise motion vectors to two sinusoid functions. Due to sharing the optimization variables, column-wise shifts and image rotation of each motion vector can be optimized jointly. Afterwards, the 3D rotation between two frames is obtained from the offsets, amplitudes and phase-shifts of the two sinusoid functions. Finally, we perform experiments for 3D rotation, which show that our algorithm outperforms the geometry-based methods in accuracy, robustness and speed. Compared to our early version, this paper makes several improvements: 1) modeling both pixel shifts and sub-regions' rotation to the sinusoid fitting problem, instead of only pixel shifts; 2) exploiting optical flow to extract motion vectors in addition to FMT; 3) comparing with a geometry-based method for pure rotation as well as five-point algorithms. |
关键词 | Rotation estimation Sinusoid fitting Omni-directional vision Visual odometry |
收录类别 | SCIE ; EI |
语种 | 英语 |
WOS研究方向 | Computer Science ; Robotics |
WOS类目 | Computer Science, Artificial Intelligence ; Robotics |
WOS记录号 | WOS:000692316500001 |
出版者 | SPRINGER |
原始文献类型 | Article |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/131846 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_Sören Schwertfeger组 信息科学与技术学院_硕士生 |
通讯作者 | Xu, Qingwen |
作者单位 | 1.Chinese Acad Sci, Shanghai Inst Microsyst, Informat Technol, Shanghai, Peoples R China; 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China; 3.ShanghaiTech Univ, Sch Informat Sci Technol, Shanghai, Peoples R China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Xu, Qingwen,Long, Xiaoling,Kuang, Haofei,et al. Rotation Estimation for Omni-directional Cameras Using Sinusoid Fitting[J]. JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS,2021,103(1). |
APA | Xu, Qingwen,Long, Xiaoling,Kuang, Haofei,&Schwertfeger, Sören.(2021).Rotation Estimation for Omni-directional Cameras Using Sinusoid Fitting.JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS,103(1). |
MLA | Xu, Qingwen,et al."Rotation Estimation for Omni-directional Cameras Using Sinusoid Fitting".JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS 103.1(2021). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。