ShanghaiTech University Knowledge Management System
SportsCap: Monocular 3D Human Motion Capture and Fine-Grained Understanding in Challenging Sports Videos | |
2021-10 | |
发表期刊 | INTERNATIONAL JOURNAL OF COMPUTER VISION |
ISSN | 0920-5691 |
EISSN | 1573-1405 |
卷号 | 129期号:10页码:2846-2864 |
DOI | 10.1007/s11263-021-01486-4 |
摘要 | Markerless motion capture and understanding of professional non-daily human movements is an important yet unsolved task, which suffers from complex motion patterns and severe self-occlusion, especially for the monocular setting. In this paper, we propose SportsCap-the first approach for simultaneously capturing 3D human motions and understanding fine-grained actions from monocular challenging sports video input. Our approach utilizes the semantic and temporally structured sub-motion prior in the embedding space for motion capture and understanding in a data-driven multi-task manner. To enable robust capture under complex motion patterns, we propose an effective motion embedding module to recover both the implicit motion embedding and explicit 3D motion details via a corresponding mapping function as well as a sub-motion classifier. Based on such hybrid motion information, we introduce a multi-stream spatial-temporal graph convolutional network to predict the fine-grained semantic action attributes, and adopt a semantic attribute mapping block to assemble various correlated action attributes into a high-level action label for the overall detailed understanding of the whole sequence, so as to enable various applications like action assessment or motion scoring. Comprehensive experiments on both public and our proposed datasets show that with a challenging monocular sports video input, our novel approach not only significantly improves the accuracy of 3D human motion capture, but also recovers accurate fine-grained semantic action attribute. |
关键词 | Human modeling 3D motion capture Motion understanding |
URL | 查看原文 |
收录类别 | SCIE ; EI |
语种 | 英语 |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence |
WOS记录号 | WOS:000681171700003 |
出版者 | SPRINGER |
原始文献类型 | Article; Early Access |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/127834 |
专题 | 信息科学与技术学院_PI研究组_马月昕 信息科学与技术学院_PI研究组_虞晶怡组 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_许岚组 |
通讯作者 | Xu, Lan; Yu, Jingyi |
作者单位 | 1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai Engn Res Ctr Intelligent Vis & Imaging, Shanghai, Peoples R China; 2.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai, Peoples R China; 3.Univ Chinese Acad Sci, Shanghai, Peoples R China; 4.Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan, Peoples R China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Chen, Xin,Pang, Anqi,Yang, Wei,et al. SportsCap: Monocular 3D Human Motion Capture and Fine-Grained Understanding in Challenging Sports Videos[J]. INTERNATIONAL JOURNAL OF COMPUTER VISION,2021,129(10):2846-2864. |
APA | Chen, Xin,Pang, Anqi,Yang, Wei,Ma, Yuexin,Xu, Lan,&Yu, Jingyi.(2021).SportsCap: Monocular 3D Human Motion Capture and Fine-Grained Understanding in Challenging Sports Videos.INTERNATIONAL JOURNAL OF COMPUTER VISION,129(10),2846-2864. |
MLA | Chen, Xin,et al."SportsCap: Monocular 3D Human Motion Capture and Fine-Grained Understanding in Challenging Sports Videos".INTERNATIONAL JOURNAL OF COMPUTER VISION 129.10(2021):2846-2864. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Chen, Xin]的文章 |
[Pang, Anqi]的文章 |
[Yang, Wei]的文章 |
百度学术 |
百度学术中相似的文章 |
[Chen, Xin]的文章 |
[Pang, Anqi]的文章 |
[Yang, Wei]的文章 |
必应学术 |
必应学术中相似的文章 |
[Chen, Xin]的文章 |
[Pang, Anqi]的文章 |
[Yang, Wei]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。