ShanghaiTech University Knowledge Management System
Automated design and optimization of multitarget schizophrenia drug candidates by deep learning | |
2020-10-15 | |
发表期刊 | EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY (IF:6.0[JCR-2023],6.1[5-Year]) |
ISSN | 0223-5234 |
卷号 | 204 |
发表状态 | 已发表 |
DOI | 10.1016/j.ejmech.2020.112572 |
摘要 | Complex neuropsychiatric diseases such as schizophrenia require drugs that can target multiple G protein-coupled receptors (GPCRs) to modulate complex neuropsychiatric functions. Here, we report an automated system comprising a deep recurrent neural network (RNN) and a multitask deep neural network (MTDNN) to design and optimize multitarget antipsychotic drugs. The system has successfully generated novel molecule structures with desired multiple target activities, among which high-ranking compound 3 was synthesized, and demonstrated potent activities against dopamine D-2, serotonin 5-HT1A and 5-HT2A receptors. Hit expansion based on the MTDNN was performed, 6 analogs of compound 3 were evaluated experimentally, among which compound 8 not only exhibited specific polypharmacology profiles but also showed antipsychotic effect in animal models with low potential for sedation and catalepsy, highlighting their suitability for further preclinical studies. The approach can be an efficient tool for designing lead compounds with multitarget profiles to achieve the desired efficacy in the treatment of complex neuropsychiatric diseases. (C) 2020 Elsevier Masson SAS. All rights reserved. |
关键词 | Schizophrenia Multitarget antipsychotic drugs Recurrent neural network Multitask deep neural network Automated drug design |
收录类别 | SCI ; SCIE ; IC |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[81773634][81703338] ; National Science & Technology Major Project "Key New Drug Creation and Manufacturing Program", China[2018ZX09711002] ; "Personalized Medicinesd Molecular Signature based Drug Discovery and Development", Strategic Priority Research of the Chinese Academy of Sciences[XDA12050201][XDA12040331] |
WOS研究方向 | Pharmacology & Pharmacy |
WOS类目 | Chemistry, Medicinal |
WOS记录号 | WOS:000573916100012 |
出版者 | ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/123934 |
专题 | 生命科学与技术学院_博士生 免疫化学研究所_特聘教授组_蒋华良组 |
通讯作者 | Zheng, Mingyue; Wang, Zhen; Jiang, Hualiang |
作者单位 | 1.Chinese Acad Sci, Drug Discovery & Design Ctr, Shanghai Inst Mat Med, State Key Lab Drug Res, 555 Zuchongzhi Rd, Shanghai 201203, Peoples R China 2.Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China 3.Chinese Acad Sci, Shanghai Inst Mat Med, CAS Key Lab Receptor Res, 555 Zuchongzhi Rd, Shanghai 201203, Peoples R China 4.ShanghaiTech Univ, Shanghai Inst Adv Immunochem Studies, 393 Huaxiazhong Rd, Shanghai 200031, Peoples R China 5.ShanghaiTech Univ, Sch Life Sci & Technol, 393 Huaxiazhong Rd, Shanghai 200031, Peoples R China 6.Dezhou Univ, Sch Informat Management, 566 West Univ Rd, Dezhou 253023, Peoples R China |
通讯作者单位 | 免疫化学研究所; 生命科学与技术学院 |
推荐引用方式 GB/T 7714 | Tan, Xiaoqin,Jiang, Xiangrui,He, Yang,et al. Automated design and optimization of multitarget schizophrenia drug candidates by deep learning[J]. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY,2020,204. |
APA | Tan, Xiaoqin.,Jiang, Xiangrui.,He, Yang.,Zhong, Feisheng.,Li, Xutong.,...&Jiang, Hualiang.(2020).Automated design and optimization of multitarget schizophrenia drug candidates by deep learning.EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY,204. |
MLA | Tan, Xiaoqin,et al."Automated design and optimization of multitarget schizophrenia drug candidates by deep learning".EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY 204(2020). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。