Automated design and optimization of multitarget schizophrenia drug candidates by deep learning
2020-10-15
发表期刊EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY (IF:6.0[JCR-2023],6.1[5-Year])
ISSN0223-5234
卷号204
发表状态已发表
DOI10.1016/j.ejmech.2020.112572
摘要Complex neuropsychiatric diseases such as schizophrenia require drugs that can target multiple G protein-coupled receptors (GPCRs) to modulate complex neuropsychiatric functions. Here, we report an automated system comprising a deep recurrent neural network (RNN) and a multitask deep neural network (MTDNN) to design and optimize multitarget antipsychotic drugs. The system has successfully generated novel molecule structures with desired multiple target activities, among which high-ranking compound 3 was synthesized, and demonstrated potent activities against dopamine D-2, serotonin 5-HT1A and 5-HT2A receptors. Hit expansion based on the MTDNN was performed, 6 analogs of compound 3 were evaluated experimentally, among which compound 8 not only exhibited specific polypharmacology profiles but also showed antipsychotic effect in animal models with low potential for sedation and catalepsy, highlighting their suitability for further preclinical studies. The approach can be an efficient tool for designing lead compounds with multitarget profiles to achieve the desired efficacy in the treatment of complex neuropsychiatric diseases. (C) 2020 Elsevier Masson SAS. All rights reserved.
关键词Schizophrenia Multitarget antipsychotic drugs Recurrent neural network Multitask deep neural network Automated drug design
收录类别SCI ; SCIE ; IC
语种英语
资助项目National Natural Science Foundation of China[81773634][81703338] ; National Science & Technology Major Project "Key New Drug Creation and Manufacturing Program", China[2018ZX09711002] ; "Personalized Medicinesd Molecular Signature based Drug Discovery and Development", Strategic Priority Research of the Chinese Academy of Sciences[XDA12050201][XDA12040331]
WOS研究方向Pharmacology & Pharmacy
WOS类目Chemistry, Medicinal
WOS记录号WOS:000573916100012
出版者ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/123934
专题生命科学与技术学院_博士生
免疫化学研究所_特聘教授组_蒋华良组
通讯作者Zheng, Mingyue; Wang, Zhen; Jiang, Hualiang
作者单位
1.Chinese Acad Sci, Drug Discovery & Design Ctr, Shanghai Inst Mat Med, State Key Lab Drug Res, 555 Zuchongzhi Rd, Shanghai 201203, Peoples R China
2.Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
3.Chinese Acad Sci, Shanghai Inst Mat Med, CAS Key Lab Receptor Res, 555 Zuchongzhi Rd, Shanghai 201203, Peoples R China
4.ShanghaiTech Univ, Shanghai Inst Adv Immunochem Studies, 393 Huaxiazhong Rd, Shanghai 200031, Peoples R China
5.ShanghaiTech Univ, Sch Life Sci & Technol, 393 Huaxiazhong Rd, Shanghai 200031, Peoples R China
6.Dezhou Univ, Sch Informat Management, 566 West Univ Rd, Dezhou 253023, Peoples R China
通讯作者单位免疫化学研究所;  生命科学与技术学院
推荐引用方式
GB/T 7714
Tan, Xiaoqin,Jiang, Xiangrui,He, Yang,et al. Automated design and optimization of multitarget schizophrenia drug candidates by deep learning[J]. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY,2020,204.
APA Tan, Xiaoqin.,Jiang, Xiangrui.,He, Yang.,Zhong, Feisheng.,Li, Xutong.,...&Jiang, Hualiang.(2020).Automated design and optimization of multitarget schizophrenia drug candidates by deep learning.EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY,204.
MLA Tan, Xiaoqin,et al."Automated design and optimization of multitarget schizophrenia drug candidates by deep learning".EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY 204(2020).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Tan, Xiaoqin]的文章
[Jiang, Xiangrui]的文章
[He, Yang]的文章
百度学术
百度学术中相似的文章
[Tan, Xiaoqin]的文章
[Jiang, Xiangrui]的文章
[He, Yang]的文章
必应学术
必应学术中相似的文章
[Tan, Xiaoqin]的文章
[Jiang, Xiangrui]的文章
[He, Yang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。