消息
×
loading..
Empowering Robot Path Planning with Large Language Models: osmAG Map Topology & Hierarchy Comprehension with LLMs
2024
会议录名称IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS, ROBIO
ISSN2994-3566
期号2024
页码707-712
发表状态已发表
DOI10.1109/ROBIO64047.2024.10907658
摘要

Large Language Models (LLMs) have demonstrated great potential in robotic applications by providing essential general knowledge. Mobile robots rely on map comprehension for tasks like localization and navigation. In this paper, we explore enabling LLMs to comprehend the topology and hierarchy of Area Graph, a text-based hierarchical, topometric semantic map representation utilizing polygons to demark areas such as rooms or buildings. Our experiments demonstrate that with the right map representation, LLMs can effectively comprehend Area Graph's topology and hierarchy. After straightforward fine-tuning, the LLaMA2 models exceeded ChatGPT-3.5 in mastering these aspects. Our dataset, dataset generation code, fine-tuned LoRA adapters can be accessed at https://github.com/xiefujing/LLM-osmAG-Comprehension. © 2024 IEEE.

关键词Industrial robots Intelligent robots Microrobots Mobile robots Motion planning Nanorobots Problem oriented languages Robot applications Robot programming Fine tuning General knowledge Graph topology Language model Localization and navigation Map representations Robot path-planning Robotics applications Semantic map
会议名称2024 IEEE International Conference on Robotics and Biomimetics, ROBIO 2024
会议地点Bangkok, Thailand
会议日期December 10, 2024 - December 14, 2024
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20251418168540
EI主题词Semantics
EISSN2994-3574
EI分类号101.6.1 Robotic Assistants ; 731.5 Robotics ; 731.6 Robot Applications ; 903.2 Information Dissemination ; 1101 Artificial Intelligence ; 1106.1 Computer Programming ; 1106.1.1 Computer Programming Languages
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/517410
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_Sören Schwertfeger组
通讯作者Schwertfeger, Soren
作者单位
Collaboration - ShanghaiTech University, Key Laboratory of Intelligent Perception and Human-Machine, Ministry of Education, China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Xie, Fujing,Schwertfeger, Soren. Empowering Robot Path Planning with Large Language Models: osmAG Map Topology & Hierarchy Comprehension with LLMs[C]:Institute of Electrical and Electronics Engineers Inc.,2024:707-712.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xie, Fujing]的文章
[Schwertfeger, Soren]的文章
百度学术
百度学术中相似的文章
[Xie, Fujing]的文章
[Schwertfeger, Soren]的文章
必应学术
必应学术中相似的文章
[Xie, Fujing]的文章
[Schwertfeger, Soren]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。