| |||||||
ShanghaiTech University Knowledge Management System
Empowering Robot Path Planning with Large Language Models: osmAG Map Topology & Hierarchy Comprehension with LLMs | |
2024 | |
会议录名称 | IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS, ROBIO |
ISSN | 2994-3566 |
期号 | 2024 |
页码 | 707-712 |
发表状态 | 已发表 |
DOI | 10.1109/ROBIO64047.2024.10907658 |
摘要 | Large Language Models (LLMs) have demonstrated great potential in robotic applications by providing essential general knowledge. Mobile robots rely on map comprehension for tasks like localization and navigation. In this paper, we explore enabling LLMs to comprehend the topology and hierarchy of Area Graph, a text-based hierarchical, topometric semantic map representation utilizing polygons to demark areas such as rooms or buildings. Our experiments demonstrate that with the right map representation, LLMs can effectively comprehend Area Graph's topology and hierarchy. After straightforward fine-tuning, the LLaMA2 models exceeded ChatGPT-3.5 in mastering these aspects. Our dataset, dataset generation code, fine-tuned LoRA adapters can be accessed at https://github.com/xiefujing/LLM-osmAG-Comprehension. © 2024 IEEE. |
关键词 | Industrial robots Intelligent robots Microrobots Mobile robots Motion planning Nanorobots Problem oriented languages Robot applications Robot programming Fine tuning General knowledge Graph topology Language model Localization and navigation Map representations Robot path-planning Robotics applications Semantic map |
会议名称 | 2024 IEEE International Conference on Robotics and Biomimetics, ROBIO 2024 |
会议地点 | Bangkok, Thailand |
会议日期 | December 10, 2024 - December 14, 2024 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20251418168540 |
EI主题词 | Semantics |
EISSN | 2994-3574 |
EI分类号 | 101.6.1 Robotic Assistants ; 731.5 Robotics ; 731.6 Robot Applications ; 903.2 Information Dissemination ; 1101 Artificial Intelligence ; 1106.1 Computer Programming ; 1106.1.1 Computer Programming Languages |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/517410 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_Sören Schwertfeger组 |
通讯作者 | Schwertfeger, Soren |
作者单位 | Collaboration - ShanghaiTech University, Key Laboratory of Intelligent Perception and Human-Machine, Ministry of Education, China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Xie, Fujing,Schwertfeger, Soren. Empowering Robot Path Planning with Large Language Models: osmAG Map Topology & Hierarchy Comprehension with LLMs[C]:Institute of Electrical and Electronics Engineers Inc.,2024:707-712. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Xie, Fujing]的文章 |
[Schwertfeger, Soren]的文章 |
百度学术 |
百度学术中相似的文章 |
[Xie, Fujing]的文章 |
[Schwertfeger, Soren]的文章 |
必应学术 |
必应学术中相似的文章 |
[Xie, Fujing]的文章 |
[Schwertfeger, Soren]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。