| |||||||
ShanghaiTech University Knowledge Management System
Conformational ensembles for protein structure prediction | |
2025-03-12 | |
发表期刊 | SCIENTIFIC REPORTS (IF:3.8[JCR-2023],4.3[5-Year]) |
ISSN | 2045-2322 |
卷号 | 15期号:1 |
发表状态 | 已发表 |
DOI | 10.1038/s41598-024-84066-z |
摘要 | Acquisition of conformational ensembles for a protein is a challenging task, which is actually involving to the solution for protein folding problem and the study of intrinsically disordered protein. Despite AlphaFold with artificial intelligence acquired unprecedented accuracy to predict structures, its result is limited to a single state of conformation and it cannot provide multiple conformations to display protein intrinsic disorder. To overcome the barrier, a FiveFold approach was developed with a single sequence method. It applied the protein folding shape code (PFSC) uniformly to expose local folds of five amino acid residues, formed the protein folding variation matrix (PFVM) to reveal local folding variations along sequence, obtained a massive number of folding conformations in PFSC strings, and then an ensemble of multiple conformational protein structures is constructed. The P53_HUMAN as a well-known protein and LEF1_HUMAN and Q8GT36_SPIOL as typical disordered proteins are token as the benchmark to evaluate the predicted outcomes. The results demonstrated an effective algorithm and biological meaningful process well to predict protein multiple conformation structures. |
关键词 | Protein structure prediction Protein conformation Protein folding Intrinsically disordered protein Protein intrinsic disorder AlphaFold |
URL | 查看原文 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[ |
WOS研究方向 | Science & Technology - Other Topics |
WOS类目 | Multidisciplinary Sciences |
WOS记录号 | WOS:001443936100007 |
出版者 | NATURE PORTFOLIO |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/503568 |
专题 | iHuman研究所 iHuman研究所_PI研究组_赵素文组 |
通讯作者 | Yang, Jiaan |
作者单位 | 1.Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Guangdong, Peoples R China 2.Micro Biotech Ltd, Shanghai 200123, Peoples R China 3.Huazhong Univ Sci & Technol, Tongji Med Coll, Sch Basic Med, Wuhan 430030, Hubei, Peoples R China 4.HYK High Throughput Biotechnol Inst, Shenzhen 518057, Guangdong, Peoples R China 5.Wuhan Int Biohub Cooperat, Wuhan 430075, Hubei, Peoples R China 6.ShanghaiTech Univ, iHuman Inst, Shanghai 201210, Peoples R China 7.Beyang Therapeut Co Ltd, Shanghai 201210, Peoples R China 8.Chinese Acad Sci, Shanghai Adv Res Inst, Natl Facil Prot Sci Shanghai, Shanghai 201210, Peoples R China 9.Shenzhen Univ, Coll Life Sci & Oceanog, Lab Aquat Genom, Shenzhen 518057, Peoples R China 10.Shenzhen Univ Adv Technol, Biomed Engn, Shenzhen 518060, Peoples R China |
推荐引用方式 GB/T 7714 | Yang, Jiaan,Cheng, Wen Xiang,Zhang, Peng,et al. Conformational ensembles for protein structure prediction[J]. SCIENTIFIC REPORTS,2025,15(1). |
APA | Yang, Jiaan.,Cheng, Wen Xiang.,Zhang, Peng.,Wu, Gang.,Sheng, Si Tong.,...&Shi, Qiong.(2025).Conformational ensembles for protein structure prediction.SCIENTIFIC REPORTS,15(1). |
MLA | Yang, Jiaan,et al."Conformational ensembles for protein structure prediction".SCIENTIFIC REPORTS 15.1(2025). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。