Eigenspace conditions for homomorphic sensing
Manolis Tsakiris
2019
Publication PlaceArXiv
Abstract

Given two endomorphisms τ1,τ2 of ℂm, we provide eigenspace conditions under which τ1(v1)=τ2(v2) for v1,v2∈ can only be true if v1=v2, where  is a general n-dimensional subspace of ℂm for some n≤m/2. As a special case, we show that these eigenspace conditions are true when the endomorphisms are permutations composed with coordinate projections, leading to an abstract proof of the recent unlabeled sensing theorem of Unnikrishnan et al.

KeywordHomomorphic sensing unlabeled sensing shuffled linear regression Jordan form determinantal varieties rational normal scroll
Language英语
Document Type科技报告
Identifierhttps://kms.shanghaitech.edu.cn/handle/2MSLDSTB/50002
Collection信息科学与技术学院_PI研究组_Manolis Tsakiris组
AffiliationShanghaiTech University
First Author AffilicationShanghaiTech University
Recommended Citation
GB/T 7714
Manolis Tsakiris. Eigenspace conditions for homomorphic sensing[R]. ArXiv,2019.
Files in This Item:
File Name/Size DocType Version Access License
ECHS-arXiv-28Apr19.p(231KB)科技报告 限制开放CC BY-NC-SAView Application Full Text
Related Services
Usage statistics
Scholar Google
Similar articles in Scholar Google
[Manolis Tsakiris]'s Articles
Baidu academic
Similar articles in Baidu academic
[Manolis Tsakiris]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Manolis Tsakiris]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: ECHS-arXiv-28Apr19.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.