Low-Cost Acoustic Field Reconstruction with Physics-Incorporated Deep Learning for Binary Amplitude-Only Hologram
2025
发表期刊IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT (IF:5.6[JCR-2023],5.6[5-Year])
ISSN1557-9662
EISSN1557-9662
卷号PP期号:99
发表状态已发表
DOI10.1109/TIM.2025.3554285
摘要

Acoustic reconstruction aims to recreate target acoustic fields by spatially modulating acoustic waves and has significant application potential. On basis of acoustic holography, this paper focuses on low-cost acoustic reconstruction technique using binary amplitude-only hologram (BAOH). A novel physics-incorporated deep learning framework trained with a two-stage strategy is proposed, achieving outstanding accuracy and real-time performance in BAOH prediction. Specifically, we introduce the Binary U-net (BU-net) architecture, which combines the classical U-net with a customized Binary Layer. With the unique design, BU-net is capable to yield binary results without being hindered by the gradient invalidation. By integrating the acoustic wave propagation model, BU-net is trained to learn the inverse mapping from the target acoustic field to the corresponding source BAOH, also eliminating the need for labor-intensive annotation collection. The simulation experiments show that the proposed method can reduce the influence of quality degradation from binarized source holograms and achieved satisfactory reconstruction quality. Comparison experiments further demonstrate that the superiority of our proposed method over state-of-the-art (SOTA) method in the aspects of both accuracy and real-time performance. Finally, physical experiments confirm the alignment with simulation results, showcasing promising potential for real-world applications.

关键词Acoustic fields Acoustic wave propagation Electron holography Holograms Inverse problems Sound recording Surface discharges Acoustic field reconstruction Acoustic holography Acoustics waves Binary amplitude-only hologram Learning frameworks Low-costs NET architecture Physic-incorporated deep learning Real time performance Reconstruction techniques
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20251318146334
EI主题词Acoustic holography
EI分类号701.1 Electricity: Basic Concepts and Phenomena ; 743 Holography ; 751.1 Acoustic Waves ; 752.2 Sound Recording ; 1201 Mathematics
原始文献类型Journal article (JA)
来源库IEEE
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/493541
专题信息科学与技术学院
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_刘松组
通讯作者Hu Su; Song Liu
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
2.Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
3.Institute of Automation, Chinese Academy of Sciences, Beijing, China
4.Shanghai Engineering Research Center of Intelligent Vision and Imaging, Shanghai, China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Qing Liu,Chengxi Zhong,Zhenhuan Sun,et al. Low-Cost Acoustic Field Reconstruction with Physics-Incorporated Deep Learning for Binary Amplitude-Only Hologram[J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT,2025,PP(99).
APA Qing Liu,Chengxi Zhong,Zhenhuan Sun,You-Fu Li,Hu Su,&Song Liu.(2025).Low-Cost Acoustic Field Reconstruction with Physics-Incorporated Deep Learning for Binary Amplitude-Only Hologram.IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT,PP(99).
MLA Qing Liu,et al."Low-Cost Acoustic Field Reconstruction with Physics-Incorporated Deep Learning for Binary Amplitude-Only Hologram".IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT PP.99(2025).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Qing Liu]的文章
[Chengxi Zhong]的文章
[Zhenhuan Sun]的文章
百度学术
百度学术中相似的文章
[Qing Liu]的文章
[Chengxi Zhong]的文章
[Zhenhuan Sun]的文章
必应学术
必应学术中相似的文章
[Qing Liu]的文章
[Chengxi Zhong]的文章
[Zhenhuan Sun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。