Physics-based generative adversarial network for real-time acoustic holography
2025-05
发表期刊ULTRASONICS (IF:3.8[JCR-2023],3.7[5-Year])
ISSN0041-624X
EISSN1874-9968
卷号149
发表状态已发表
DOI10.1016/j.ultras.2025.107583
摘要

Acoustic holography (AH) encodes the acoustic fields in high dimensions into two-dimensional holograms without information loss. Phase-only holography (POH) modulates only the phase profiles of the encoded hologram, establishing its superiority over alternative modulation schedules due to its information volume and storage efficiency. Moreover, POH implemented by a phased array of transducers (PAT) facilitates active and dynamic manipulation by independently modulating the phase of each transducer. However, existing algorithms for POH calculation suffer from a deficiency in terms of high fidelity and good real-time performance. Thus, a deep learning algorithm reinforced by the physical model, i.e. Angular Spectrum Method (ASM), is proposed to learn the inverse physical mapping from the target field to the source POH. This method comprises a generative adversarial network (GAN) evaluated by soft label, which is referred to as soft-GAN. Furthermore, to avoid the intrinsic limitation of neural networks on high-frequency features, a Y-Net structure is developed with two decoder branches in frequency and spatial domain, respectively. The proposed method achieves the reconstruction performance with a state-of-the-art (SOTA) Peak Signal-to-Noise Ratio (PSNR) of 24.05 dB. Experiment results demonstrated that the POH calculated by the proposed method enables accurate and real-time hologram reconstruction, showing enormous potential for applications. © 2025 Elsevier B.V.

关键词Holograms Inverse problems Sound recording Adversarial networks Deep learning Higher dimensions Information loss Phase profile Phase-only Phase-only hologram Physics-based Real- time Two-dimensional
URL查看原文
收录类别SCI ; EI
语种英语
资助项目Foundation of China[62303321]
WOS研究方向Acoustics ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Acoustics ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001419697900001
出版者Elsevier B.V.
EI入藏号20250517803032
EI主题词Acoustic holography
EI分类号1201 Mathematics ; 743 Holography ; 752.2 Sound Recording
原始文献类型Journal article (JA)
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/490312
专题信息科学与技术学院
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_刘松组
通讯作者Su, Hu
作者单位
1.School of Information Science and Technology, Shanghaitech University, Shanghai; 201210, China;
2.Institute of Automation, Chinese Academy of Science, Beijing; 100190, China;
3.Shanghai Engineering Research Center of Intelligent Vision and Imaging, Shanghai; 201210, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Lu, Qingyi,Zhong, Chengxi,Su, Hu,et al. Physics-based generative adversarial network for real-time acoustic holography[J]. ULTRASONICS,2025,149.
APA Lu, Qingyi,Zhong, Chengxi,Su, Hu,&Liu, Song.(2025).Physics-based generative adversarial network for real-time acoustic holography.ULTRASONICS,149.
MLA Lu, Qingyi,et al."Physics-based generative adversarial network for real-time acoustic holography".ULTRASONICS 149(2025).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Lu, Qingyi]的文章
[Zhong, Chengxi]的文章
[Su, Hu]的文章
百度学术
百度学术中相似的文章
[Lu, Qingyi]的文章
[Zhong, Chengxi]的文章
[Su, Hu]的文章
必应学术
必应学术中相似的文章
[Lu, Qingyi]的文章
[Zhong, Chengxi]的文章
[Su, Hu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。