ShanghaiTech University Knowledge Management System
Physics-based generative adversarial network for real-time acoustic holography | |
2025-05 | |
发表期刊 | ULTRASONICS (IF:3.8[JCR-2023],3.7[5-Year]) |
ISSN | 0041-624X |
EISSN | 1874-9968 |
卷号 | 149 |
发表状态 | 已发表 |
DOI | 10.1016/j.ultras.2025.107583 |
摘要 | Acoustic holography (AH) encodes the acoustic fields in high dimensions into two-dimensional holograms without information loss. Phase-only holography (POH) modulates only the phase profiles of the encoded hologram, establishing its superiority over alternative modulation schedules due to its information volume and storage efficiency. Moreover, POH implemented by a phased array of transducers (PAT) facilitates active and dynamic manipulation by independently modulating the phase of each transducer. However, existing algorithms for POH calculation suffer from a deficiency in terms of high fidelity and good real-time performance. Thus, a deep learning algorithm reinforced by the physical model, i.e. Angular Spectrum Method (ASM), is proposed to learn the inverse physical mapping from the target field to the source POH. This method comprises a generative adversarial network (GAN) evaluated by soft label, which is referred to as soft-GAN. Furthermore, to avoid the intrinsic limitation of neural networks on high-frequency features, a Y-Net structure is developed with two decoder branches in frequency and spatial domain, respectively. The proposed method achieves the reconstruction performance with a state-of-the-art (SOTA) Peak Signal-to-Noise Ratio (PSNR) of 24.05 dB. Experiment results demonstrated that the POH calculated by the proposed method enables accurate and real-time hologram reconstruction, showing enormous potential for applications. © 2025 Elsevier B.V. |
关键词 | Holograms Inverse problems Sound recording Adversarial networks Deep learning Higher dimensions Information loss Phase profile Phase-only Phase-only hologram Physics-based Real- time Two-dimensional |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
资助项目 | Foundation of China[62303321] |
WOS研究方向 | Acoustics ; Radiology, Nuclear Medicine & Medical Imaging |
WOS类目 | Acoustics ; Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:001419697900001 |
出版者 | Elsevier B.V. |
EI入藏号 | 20250517803032 |
EI主题词 | Acoustic holography |
EI分类号 | 1201 Mathematics ; 743 Holography ; 752.2 Sound Recording |
原始文献类型 | Journal article (JA) |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/490312 |
专题 | 信息科学与技术学院 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_刘松组 |
通讯作者 | Su, Hu |
作者单位 | 1.School of Information Science and Technology, Shanghaitech University, Shanghai; 201210, China; 2.Institute of Automation, Chinese Academy of Science, Beijing; 100190, China; 3.Shanghai Engineering Research Center of Intelligent Vision and Imaging, Shanghai; 201210, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Lu, Qingyi,Zhong, Chengxi,Su, Hu,et al. Physics-based generative adversarial network for real-time acoustic holography[J]. ULTRASONICS,2025,149. |
APA | Lu, Qingyi,Zhong, Chengxi,Su, Hu,&Liu, Song.(2025).Physics-based generative adversarial network for real-time acoustic holography.ULTRASONICS,149. |
MLA | Lu, Qingyi,et al."Physics-based generative adversarial network for real-time acoustic holography".ULTRASONICS 149(2025). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。