Accurate and real-time acoustic holography using super-resolution and physics combined deep learning
2025-02-03
发表期刊APPLIED PHYSICS LETTERS (IF:3.5[JCR-2023],3.5[5-Year])
ISSN0003-6951
EISSN1077-3118
卷号126期号:5
发表状态已发表
DOI10.1063/5.0234327
摘要

Acoustic holography is a promising technique for contactless manipulation, remote sensing, and energy harvesting. It involves retrieving holograms used to modulate acoustic sources for reconstructing target acoustic fields. The performance of reconstruction is primarily determined by two key criteria, including the spatial bandwidth product, which measures the pixel number representing information capacity, and the resolution, which quantifies the pixel size supporting detail gain. However, existing techniques face limitations in reconstructing high-fidelity, dynamic, and real-time acoustic fields with enhanced spatial bandwidth product and resolution across the entire aperture size. These challenges stem from the reliance on physically constrained holograms with static nature or relatively low spatial bandwidth product and resolution. Here, we introduce super-resolution acoustic holography, wherein the spatial bandwidth and resolution of the reconstructed target acoustic fields surpass those of the retrieved source holograms, especially within the same aperture size. We further develop a deep learning strategy that combines a classical neural network architecture with a linear accumulation based physical model, allowing for the customization of reconstructed acoustic planes with higher resolution while maintaining the same lateral coverages. Extensive algorithmic validations, numerical simulations, and practical experiments demonstrate the capability of our method to achieve high-fidelity, dynamic, real-time super-resolution acoustic holography, rendering its potential to advance practical applications in holographic acoustics.

关键词Acoustic fields Electron holography Holograms Image resolution Superpixels Acoustic sources Aperture sizes Bandwidth product Contactless manipulation Energy High-fidelity Real- time Remote-sensing Spatial bandwidth Superresolution
URL查看原文
收录类别SCI ; EI
语种英语
资助项目National Natural Science Foundation of China10.13039/501100001809[62303321]
WOS研究方向Physics
WOS类目Physics, Applied
WOS记录号WOS:001416709100001
出版者AIP Publishing
EI入藏号20250717852416
EI主题词Acoustic holography
EI分类号1106.3.1 Image Processing ; 1106.8 Computer Vision ; 743 Holography ; 751.1 Acoustic Waves
原始文献类型Journal article (JA)
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/490260
专题信息科学与技术学院
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_刘松组
通讯作者Su, Hu; Liu, Song
作者单位
1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
2.CASIA, State Key Lab Multimodal Artificial Intelligence S, Beijing 100190, Peoples R China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Zhong, Chengxi,Sun, Zhenhuan,Li, Jiaqi,et al. Accurate and real-time acoustic holography using super-resolution and physics combined deep learning[J]. APPLIED PHYSICS LETTERS,2025,126(5).
APA Zhong, Chengxi,Sun, Zhenhuan,Li, Jiaqi,Jiang, Yujie,Su, Hu,&Liu, Song.(2025).Accurate and real-time acoustic holography using super-resolution and physics combined deep learning.APPLIED PHYSICS LETTERS,126(5).
MLA Zhong, Chengxi,et al."Accurate and real-time acoustic holography using super-resolution and physics combined deep learning".APPLIED PHYSICS LETTERS 126.5(2025).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhong, Chengxi]的文章
[Sun, Zhenhuan]的文章
[Li, Jiaqi]的文章
百度学术
百度学术中相似的文章
[Zhong, Chengxi]的文章
[Sun, Zhenhuan]的文章
[Li, Jiaqi]的文章
必应学术
必应学术中相似的文章
[Zhong, Chengxi]的文章
[Sun, Zhenhuan]的文章
[Li, Jiaqi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。