NesT-NABind: a Nested Transformer for Nucleic Acid-Binding Site Prediction on Protein Surface
2025
发表期刊JOURNAL OF CHEMICAL INFORMATION AND MODELING
ISSN1549-9596
EISSN1549-960X
卷号65期号:3页码:1166-1177
发表状态已发表
DOI10.1021/acs.jcim.4c01765
摘要

Protein-nucleic acid interactions play a crucial role in many physiological processes. Identifying the binding sites of nucleotides on the protein surface is the prerequisite for understanding the molecular recognition mechanisms between the two types of macromolecules and also provides the information to design or generate molecule modulators against these sites to manipulate biological function according to specific requirements. Existing studies mainly focus on characterizing local surfaces around sites, often neglecting the interrelationships among these sites and the global protein information. To address this gap, we propose NesT-NABind, a Nested Transformer for Nucleic Acid-Binding site prediction. This model leverages the Transformer's advanced capabilities in contextual understanding and long-range dependency capturing. Specifically, we introduce a local patch-scale Transformer to process surface information around each site and a global protein-scale transformer to integrate surface and sequence information on the entire protein. These two Transformers operate at different scales of protein, hence the term "nested". Experiments demonstrate that NesT-NABind achieves a 5.57% improvement in the F1 score and a 3.64% improvement in AUPRC compared to state-of-the-art methods. With the incorporation of global features, NesT-NABind shows an enhanced predictive capability for the challenging large proteins and therefore can be used in a much wider range of applications.

关键词Nucleotides Binding site predictions Binding-sites Biological functions Contextual understanding Local surfaces Molecular recognition mechanism Physiological process Protein surface Protein-nucleic acid interaction Surface information
URL查看原文
收录类别SCI ; EI
语种英语
资助项目Shanghai Science and Technology Development Funds[
WOS研究方向Pharmacology & Pharmacy ; Chemistry ; Computer Science
WOS类目Chemistry, Medicinal ; Chemistry, Multidisciplinary ; Computer Science, Information Systems ; Computer Science, Interdisciplinary Applications
WOS记录号WOS:001399639800001
出版者AMER CHEMICAL SOC
EI入藏号20250417739927
EI主题词Binding sites
EI分类号103 Biology ; 801.1 Biochemistry
原始文献类型Journal article (JA)
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/483922
专题信息科学与技术学院
生命科学与技术学院
免疫化学研究所
信息科学与技术学院_硕士生
免疫化学研究所_PI研究组_白芳组
通讯作者Gao, Shenghua; Bai, Fang
作者单位
1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
2.ShanghaiTech Univ, Shanghai Inst Adv Immunochem Studies, Shanghai 201210, Peoples R China
3.Aalto Univ, Dept Comp Sci, Espoo 02150, Finland
4.Univ Hong Kong, Dept Comp Sci, Hong Kong 999077, Peoples R China
5.HKU Shanghai lntelligent Comp Res Ctr, Shanghai 201210, Peoples R China
6.ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai 201210, Peoples R China
7.Shanghai Clin Res & Trial Ctr, Shanghai 201210, Peoples R China
第一作者单位信息科学与技术学院;  免疫化学研究所
通讯作者单位信息科学与技术学院;  免疫化学研究所;  生命科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Ma, Xinyue,Li, Fenglei,Chen, Qianyu,et al. NesT-NABind: a Nested Transformer for Nucleic Acid-Binding Site Prediction on Protein Surface[J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING,2025,65(3):1166-1177.
APA Ma, Xinyue,Li, Fenglei,Chen, Qianyu,Gao, Shenghua,&Bai, Fang.(2025).NesT-NABind: a Nested Transformer for Nucleic Acid-Binding Site Prediction on Protein Surface.JOURNAL OF CHEMICAL INFORMATION AND MODELING,65(3),1166-1177.
MLA Ma, Xinyue,et al."NesT-NABind: a Nested Transformer for Nucleic Acid-Binding Site Prediction on Protein Surface".JOURNAL OF CHEMICAL INFORMATION AND MODELING 65.3(2025):1166-1177.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Ma, Xinyue]的文章
[Li, Fenglei]的文章
[Chen, Qianyu]的文章
百度学术
百度学术中相似的文章
[Ma, Xinyue]的文章
[Li, Fenglei]的文章
[Chen, Qianyu]的文章
必应学术
必应学术中相似的文章
[Ma, Xinyue]的文章
[Li, Fenglei]的文章
[Chen, Qianyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。