ShanghaiTech University Knowledge Management System
NesT-NABind: a Nested Transformer for Nucleic Acid-Binding Site Prediction on Protein Surface | |
2025 | |
发表期刊 | JOURNAL OF CHEMICAL INFORMATION AND MODELING
![]() |
ISSN | 1549-9596 |
EISSN | 1549-960X |
卷号 | 65期号:3页码:1166-1177 |
发表状态 | 已发表 |
DOI | 10.1021/acs.jcim.4c01765 |
摘要 | Protein-nucleic acid interactions play a crucial role in many physiological processes. Identifying the binding sites of nucleotides on the protein surface is the prerequisite for understanding the molecular recognition mechanisms between the two types of macromolecules and also provides the information to design or generate molecule modulators against these sites to manipulate biological function according to specific requirements. Existing studies mainly focus on characterizing local surfaces around sites, often neglecting the interrelationships among these sites and the global protein information. To address this gap, we propose NesT-NABind, a Nested Transformer for Nucleic Acid-Binding site prediction. This model leverages the Transformer's advanced capabilities in contextual understanding and long-range dependency capturing. Specifically, we introduce a local patch-scale Transformer to process surface information around each site and a global protein-scale transformer to integrate surface and sequence information on the entire protein. These two Transformers operate at different scales of protein, hence the term "nested". Experiments demonstrate that NesT-NABind achieves a 5.57% improvement in the F1 score and a 3.64% improvement in AUPRC compared to state-of-the-art methods. With the incorporation of global features, NesT-NABind shows an enhanced predictive capability for the challenging large proteins and therefore can be used in a much wider range of applications. |
关键词 | Nucleotides Binding site predictions Binding-sites Biological functions Contextual understanding Local surfaces Molecular recognition mechanism Physiological process Protein surface Protein-nucleic acid interaction Surface information |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
资助项目 | Shanghai Science and Technology Development Funds[ |
WOS研究方向 | Pharmacology & Pharmacy ; Chemistry ; Computer Science |
WOS类目 | Chemistry, Medicinal ; Chemistry, Multidisciplinary ; Computer Science, Information Systems ; Computer Science, Interdisciplinary Applications |
WOS记录号 | WOS:001399639800001 |
出版者 | AMER CHEMICAL SOC |
EI入藏号 | 20250417739927 |
EI主题词 | Binding sites |
EI分类号 | 103 Biology ; 801.1 Biochemistry |
原始文献类型 | Journal article (JA) |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/483922 |
专题 | 信息科学与技术学院 生命科学与技术学院 免疫化学研究所 信息科学与技术学院_硕士生 免疫化学研究所_PI研究组_白芳组 |
通讯作者 | Gao, Shenghua; Bai, Fang |
作者单位 | 1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China 2.ShanghaiTech Univ, Shanghai Inst Adv Immunochem Studies, Shanghai 201210, Peoples R China 3.Aalto Univ, Dept Comp Sci, Espoo 02150, Finland 4.Univ Hong Kong, Dept Comp Sci, Hong Kong 999077, Peoples R China 5.HKU Shanghai lntelligent Comp Res Ctr, Shanghai 201210, Peoples R China 6.ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai 201210, Peoples R China 7.Shanghai Clin Res & Trial Ctr, Shanghai 201210, Peoples R China |
第一作者单位 | 信息科学与技术学院; 免疫化学研究所 |
通讯作者单位 | 信息科学与技术学院; 免疫化学研究所; 生命科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Ma, Xinyue,Li, Fenglei,Chen, Qianyu,et al. NesT-NABind: a Nested Transformer for Nucleic Acid-Binding Site Prediction on Protein Surface[J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING,2025,65(3):1166-1177. |
APA | Ma, Xinyue,Li, Fenglei,Chen, Qianyu,Gao, Shenghua,&Bai, Fang.(2025).NesT-NABind: a Nested Transformer for Nucleic Acid-Binding Site Prediction on Protein Surface.JOURNAL OF CHEMICAL INFORMATION AND MODELING,65(3),1166-1177. |
MLA | Ma, Xinyue,et al."NesT-NABind: a Nested Transformer for Nucleic Acid-Binding Site Prediction on Protein Surface".JOURNAL OF CHEMICAL INFORMATION AND MODELING 65.3(2025):1166-1177. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。