ShanghaiTech University Knowledge Management System
Neural Surfel Reconstruction: Addressing Loop Closure Challenges in Large-Scale 3D Neural Scene Mapping | |
2024-11-01 | |
发表期刊 | SENSORS (IF:3.4[JCR-2023],3.7[5-Year]) |
ISSN | 1424-8220 |
EISSN | 1424-8220 |
卷号 | 24期号:21 |
发表状态 | 已发表 |
DOI | 10.3390/s24216919 |
摘要 | Efficiently reconstructing complex and intricate surfaces at scale remains a significant challenge in 3D surface reconstruction. Recently, implicit neural representations have become a popular topic in 3D surface reconstruction. However, how to handle loop closure and bundle adjustment is a tricky problem for neural methods, because they learn the neural parameters globally. We present an algorithm that leverages the concept of surfels and expands relevant definitions to address such challenges. By integrating neural descriptors with surfels and framing surfel association as a deformation graph optimization problem, our method is able to effectively perform loop closure detection and loop correction in challenging scenarios. Furthermore, the surfel-level representation simplifies the complexity of 3D neural reconstruction. Meanwhile, the binding of neural descriptors to corresponding surfels produces a dense volumetric signed distance function (SDF), enabling the mesh reconstruction. Our approach demonstrates a significant improvement in reconstruction accuracy, reducing the average error by 16.9% compared to previous methods, while also generating modeling files that are up to 90% smaller than those produced by traditional methods. |
关键词 | 3D scene reconstruction large-scale reconstruction surfel neural representation loop closure |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
资助项目 | the Science and Technology Commission of Shanghai Municipality (STCSM)[22JC1410700] |
WOS研究方向 | Chemistry ; Engineering ; Instruments & Instrumentation |
WOS类目 | Chemistry, Analytical ; Engineering, Electrical & Electronic ; Instruments & Instrumentation |
WOS记录号 | WOS:001350994900001 |
出版者 | MDPI |
EI入藏号 | 20244617355304 |
EI主题词 | 3D reconstruction |
EI分类号 | 1106.2 ; 1106.8 ; 1201.12 ; 902.1 Engineering Graphics |
原始文献类型 | Journal article (JA) |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/442506 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_Sören Schwertfeger组 信息科学与技术学院_PI研究组_Laurent Kneip组 信息科学与技术学院_硕士生 |
共同第一作者 | Kneip, Laurent |
通讯作者 | Kneip, Laurent; Schwertfeger, Soren |
作者单位 | ShanghaiTech Univ, Minist Educ, Key Lab Intelligent Percept & Human Machine Collab, Shanghai 201210, Peoples R China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Cui, Jiadi,Zhang, Jiajie,Kneip, Laurent,et al. Neural Surfel Reconstruction: Addressing Loop Closure Challenges in Large-Scale 3D Neural Scene Mapping[J]. SENSORS,2024,24(21). |
APA | Cui, Jiadi,Zhang, Jiajie,Kneip, Laurent,&Schwertfeger, Soren.(2024).Neural Surfel Reconstruction: Addressing Loop Closure Challenges in Large-Scale 3D Neural Scene Mapping.SENSORS,24(21). |
MLA | Cui, Jiadi,et al."Neural Surfel Reconstruction: Addressing Loop Closure Challenges in Large-Scale 3D Neural Scene Mapping".SENSORS 24.21(2024). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。