GS-EVT: Cross-Modal Event Camera Tracking based on Gaussian Splatting
2024-09-28
状态已发表
摘要

Reliable self-localization is a foundational skill for many intelligent mobile platforms. This paper explores the use of event cameras for motion tracking thereby providing a solution with inherent robustness under difficult dynamics and illumination. In order to circumvent the challenge of event camera-based mapping, the solution is framed in a cross-modal way. It tracks a map representation that comes directly from frame-based cameras. Specifically, the proposed method operates on top of gaussian splatting, a state-of-the-art representation that permits highly efficient and realistic novel view synthesis. The key of our approach consists of a novel pose parametrization that uses a reference pose plus first order dynamics for local differential image rendering. The latter is then compared against images of integrated events in a staggered coarse-to-fine optimization scheme. As demonstrated by our results, the realistic view rendering ability of gaussian splatting leads to stable and accurate tracking across a variety of both publicly available and newly recorded data sequences.

DOIarXiv:2409.19228
相关网址查看原文
出处Arxiv
WOS记录号PPRN:100738645
WOS类目Computer Science, Software Engineering
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/433524
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_Laurent Kneip组
信息科学与技术学院_PI研究组_Xavier Pierre Lagorce组
通讯作者Kneip, Laurent
作者单位
ShanghaiTech Univ, Mobile Percept Lab, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Liu, Tao,Yuan, Runze,Ju, Yi'ang,et al. GS-EVT: Cross-Modal Event Camera Tracking based on Gaussian Splatting. 2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Liu, Tao]的文章
[Yuan, Runze]的文章
[Ju, Yi'ang]的文章
百度学术
百度学术中相似的文章
[Liu, Tao]的文章
[Yuan, Runze]的文章
[Ju, Yi'ang]的文章
必应学术
必应学术中相似的文章
[Liu, Tao]的文章
[Yuan, Runze]的文章
[Ju, Yi'ang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。