| |||||||
ShanghaiTech University Knowledge Management System
Harmonizing Generalization and Personalization in Federated Prompt Learning | |
2024 | |
会议录名称 | INTERNATIONAL CONFERENCE ON MACHINE LEARNING |
卷号 | 235 |
页码 | 9646-9661 |
发表状态 | 已发表 |
摘要 | Federated Prompt Learning (FPL) incorporates large pre-trained Vision-Language models (VLM) into federated learning through prompt tuning. The transferable representations and remarkable generalization capacity of VLM make them highly compatible with the integration of federated learning. Addressing data heterogeneity in federated learning requires personalization, but excessive focus on it across clients could compromise the model's ability to generalize effectively. To preserve the impressive generalization capability of VLM, it is crucial to strike a balance between personalization and generalization in FPL. To tackle this challenge, we proposed Federated Prompt Learning with CLIP Generalization and low-rank Personalization (FedPGP), which employs pre-trained CLIP to provide knowledge-guidance on the global prompt for improved generalization and incorporates a low-rank adaptation term to personalize the global prompt. Further, FedPGP integrates a prompt-wise contrastive loss to achieve knowledge guidance and personalized adaptation simultaneously, enabling a harmonious balance between personalization and generalization in FPL. We conduct extensive experiments on various datasets to explore base-to-novel generalization in both category-level and domain-level scenarios with heterogeneous data, showing the superiority of FedPGP in balancing generalization and personalization. Copyright 2024 by the author(s) |
关键词 | Adversarial machine learning Contrastive Learning Self-supervised learning Transfer learning Visual languages Data heterogeneity Domain levels Generalisation Generalization capability Generalization capacity Heterogeneous data Knowledge guidances Language model Modeling abilities Personalizations |
会议名称 | 41st International Conference on Machine Learning, ICML 2024 |
会议地点 | Vienna, Austria |
会议日期 | July 21, 2024 - July 27, 2024 |
收录类别 | EI |
语种 | 英语 |
出版者 | ML Research Press |
EI入藏号 | 20243817050893 |
EI主题词 | Federated learning |
EISSN | 2640-3498 |
EI分类号 | 1101.2 ; 1101.2.1 ; 1106.1.1 |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/430541 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_汪婧雅组 信息科学与技术学院_PI研究组_石野组 |
通讯作者 | Shi, Ye |
作者单位 | ShanghaiTech University, China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Cui, Tianyu,Li, Hongxia,Wang, Jingya,et al. Harmonizing Generalization and Personalization in Federated Prompt Learning[C]:ML Research Press,2024:9646-9661. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。