消息
×
loading..
Harmonizing Generalization and Personalization in Federated Prompt Learning
2024
会议录名称INTERNATIONAL CONFERENCE ON MACHINE LEARNING
卷号235
页码9646-9661
发表状态已发表
摘要

Federated Prompt Learning (FPL) incorporates large pre-trained Vision-Language models (VLM) into federated learning through prompt tuning. The transferable representations and remarkable generalization capacity of VLM make them highly compatible with the integration of federated learning. Addressing data heterogeneity in federated learning requires personalization, but excessive focus on it across clients could compromise the model's ability to generalize effectively. To preserve the impressive generalization capability of VLM, it is crucial to strike a balance between personalization and generalization in FPL. To tackle this challenge, we proposed Federated Prompt Learning with CLIP Generalization and low-rank Personalization (FedPGP), which employs pre-trained CLIP to provide knowledge-guidance on the global prompt for improved generalization and incorporates a low-rank adaptation term to personalize the global prompt. Further, FedPGP integrates a prompt-wise contrastive loss to achieve knowledge guidance and personalized adaptation simultaneously, enabling a harmonious balance between personalization and generalization in FPL. We conduct extensive experiments on various datasets to explore base-to-novel generalization in both category-level and domain-level scenarios with heterogeneous data, showing the superiority of FedPGP in balancing generalization and personalization. Copyright 2024 by the author(s)

关键词Adversarial machine learning Contrastive Learning Self-supervised learning Transfer learning Visual languages Data heterogeneity Domain levels Generalisation Generalization capability Generalization capacity Heterogeneous data Knowledge guidances Language model Modeling abilities Personalizations
会议名称41st International Conference on Machine Learning, ICML 2024
会议地点Vienna, Austria
会议日期July 21, 2024 - July 27, 2024
收录类别EI
语种英语
出版者ML Research Press
EI入藏号20243817050893
EI主题词Federated learning
EISSN2640-3498
EI分类号1101.2 ; 1101.2.1 ; 1106.1.1
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/430541
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_汪婧雅组
信息科学与技术学院_PI研究组_石野组
通讯作者Shi, Ye
作者单位
ShanghaiTech University, China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Cui, Tianyu,Li, Hongxia,Wang, Jingya,et al. Harmonizing Generalization and Personalization in Federated Prompt Learning[C]:ML Research Press,2024:9646-9661.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Cui, Tianyu]的文章
[Li, Hongxia]的文章
[Wang, Jingya]的文章
百度学术
百度学术中相似的文章
[Cui, Tianyu]的文章
[Li, Hongxia]的文章
[Wang, Jingya]的文章
必应学术
必应学术中相似的文章
[Cui, Tianyu]的文章
[Li, Hongxia]的文章
[Wang, Jingya]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。