消息
×
loading..
Exploring Protein Conformational Changes Using a Large-Scale Biophysical Sampling Augmented Deep Learning Strategy
2024-10-01
发表期刊ADVANCED SCIENCE (IF:14.3[JCR-2023],16.3[5-Year])
ISSN2198-3844
EISSN2198-3844
发表状态已发表
DOI10.1002/advs.202400884
摘要

["Inspired by the success of deep learning in predicting static protein structures, researchers are now actively exploring other deep learning algorithms aimed at predicting the conformational changes of proteins. Currently, a major challenge in the development of such models lies in the limited training data characterizing different conformational transitions. To address this issue, molecular dynamics simulations is combined with enhanced sampling methods to create a large-scale database. To this end, the study simulates the conformational changes of 2635 proteins featuring two known stable states, and collects the structural information along each transition pathway. Utilizing this database, a general deep learning model capable of predicting the transition pathway for a given protein is developed. The model exhibits general robustness across proteins with varying sequence lengths (ranging from 44 to 704 amino acids) and accommodates different types of conformational changes. Great agreement is shown between predictions and experimental data in several systems and successfully apply this model to identify a novel allosteric regulation in an important biological system, the human beta-cardiac myosin. These results demonstrate the effectiveness of the model in revealing the nature of protein conformational changes.","A large-scale database of protein conformational changes is constructed using molecular dynamics simulations. Building on this dataset, the present study develops a deep learning model that can predict the transition pathways of various proteins, including those with simple opening/closing transitions as well as those exhibiting significant global changes in folding topology. image"]

关键词conformational changes deep learning proteins transition pathway
URL查看原文
收录类别SCI ; EI
语种英语
资助项目National Key Research and Development Program of China[
WOS研究方向Chemistry ; Science & Technology - Other Topics ; Materials Science
WOS类目Chemistry, Multidisciplinary ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary
WOS记录号WOS:001329567800001
出版者WILEY
EI入藏号20244117181136
EI主题词Deep learning
EI分类号101.7.1 ; 1101.2 ; 1101.2.1 ; 804.1 Organic Compounds
原始文献类型Article in Press
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/418521
专题免疫化学研究所
信息科学与技术学院
生命科学与技术学院_博士生
免疫化学研究所_PI研究组_白芳组
共同第一作者Hao Yang
通讯作者Fang Bai; Qian Wang
作者单位
1.Department of Physics, University of Science and Technology of China, Hefei, Anhui, China, 230026
2.Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, China, 201210
3.School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, China, 201210
4.Shanghai Clinical Research and Trial Center, Shanghai, China, 201210
通讯作者单位免疫化学研究所;  信息科学与技术学院
推荐引用方式
GB/T 7714
Yao Hu,Hao Yang,Mingwei Li,et al. Exploring Protein Conformational Changes Using a Large-Scale Biophysical Sampling Augmented Deep Learning Strategy[J]. ADVANCED SCIENCE,2024.
APA Yao Hu.,Hao Yang.,Mingwei Li.,Zhicheng Zhong.,Yongqi Zhou.,...&Qian Wang.(2024).Exploring Protein Conformational Changes Using a Large-Scale Biophysical Sampling Augmented Deep Learning Strategy.ADVANCED SCIENCE.
MLA Yao Hu,et al."Exploring Protein Conformational Changes Using a Large-Scale Biophysical Sampling Augmented Deep Learning Strategy".ADVANCED SCIENCE (2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yao Hu]的文章
[Hao Yang]的文章
[Mingwei Li]的文章
百度学术
百度学术中相似的文章
[Yao Hu]的文章
[Hao Yang]的文章
[Mingwei Li]的文章
必应学术
必应学术中相似的文章
[Yao Hu]的文章
[Hao Yang]的文章
[Mingwei Li]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。