| |||||||
ShanghaiTech University Knowledge Management System
Exploring Protein Conformational Changes Using a Large-Scale Biophysical Sampling Augmented Deep Learning Strategy | |
2024-10-01 | |
发表期刊 | ADVANCED SCIENCE (IF:14.3[JCR-2023],16.3[5-Year]) |
ISSN | 2198-3844 |
EISSN | 2198-3844 |
发表状态 | 已发表 |
DOI | 10.1002/advs.202400884 |
摘要 | ["Inspired by the success of deep learning in predicting static protein structures, researchers are now actively exploring other deep learning algorithms aimed at predicting the conformational changes of proteins. Currently, a major challenge in the development of such models lies in the limited training data characterizing different conformational transitions. To address this issue, molecular dynamics simulations is combined with enhanced sampling methods to create a large-scale database. To this end, the study simulates the conformational changes of 2635 proteins featuring two known stable states, and collects the structural information along each transition pathway. Utilizing this database, a general deep learning model capable of predicting the transition pathway for a given protein is developed. The model exhibits general robustness across proteins with varying sequence lengths (ranging from 44 to 704 amino acids) and accommodates different types of conformational changes. Great agreement is shown between predictions and experimental data in several systems and successfully apply this model to identify a novel allosteric regulation in an important biological system, the human beta-cardiac myosin. These results demonstrate the effectiveness of the model in revealing the nature of protein conformational changes.","A large-scale database of protein conformational changes is constructed using molecular dynamics simulations. Building on this dataset, the present study develops a deep learning model that can predict the transition pathways of various proteins, including those with simple opening/closing transitions as well as those exhibiting significant global changes in folding topology. image"] |
关键词 | conformational changes deep learning proteins transition pathway |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
资助项目 | National Key Research and Development Program of China[ |
WOS研究方向 | Chemistry ; Science & Technology - Other Topics ; Materials Science |
WOS类目 | Chemistry, Multidisciplinary ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary |
WOS记录号 | WOS:001329567800001 |
出版者 | WILEY |
EI入藏号 | 20244117181136 |
EI主题词 | Deep learning |
EI分类号 | 101.7.1 ; 1101.2 ; 1101.2.1 ; 804.1 Organic Compounds |
原始文献类型 | Article in Press |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/418521 |
专题 | 免疫化学研究所 信息科学与技术学院 生命科学与技术学院_博士生 免疫化学研究所_PI研究组_白芳组 |
共同第一作者 | Hao Yang |
通讯作者 | Fang Bai; Qian Wang |
作者单位 | 1.Department of Physics, University of Science and Technology of China, Hefei, Anhui, China, 230026 2.Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, China, 201210 3.School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, China, 201210 4.Shanghai Clinical Research and Trial Center, Shanghai, China, 201210 |
通讯作者单位 | 免疫化学研究所; 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Yao Hu,Hao Yang,Mingwei Li,et al. Exploring Protein Conformational Changes Using a Large-Scale Biophysical Sampling Augmented Deep Learning Strategy[J]. ADVANCED SCIENCE,2024. |
APA | Yao Hu.,Hao Yang.,Mingwei Li.,Zhicheng Zhong.,Yongqi Zhou.,...&Qian Wang.(2024).Exploring Protein Conformational Changes Using a Large-Scale Biophysical Sampling Augmented Deep Learning Strategy.ADVANCED SCIENCE. |
MLA | Yao Hu,et al."Exploring Protein Conformational Changes Using a Large-Scale Biophysical Sampling Augmented Deep Learning Strategy".ADVANCED SCIENCE (2024). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Yao Hu]的文章 |
[Hao Yang]的文章 |
[Mingwei Li]的文章 |
百度学术 |
百度学术中相似的文章 |
[Yao Hu]的文章 |
[Hao Yang]的文章 |
[Mingwei Li]的文章 |
必应学术 |
必应学术中相似的文章 |
[Yao Hu]的文章 |
[Hao Yang]的文章 |
[Mingwei Li]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。