ALTERNATING DIFFERENTIATION FOR OPTIMIZATION LAYERS
2023
会议录名称11TH INTERNATIONAL CONFERENCE ON LEARNING REPRESENTATIONS, ICLR 2023
发表状态正式接收
摘要The idea of embedding optimization problems into deep neural networks as optimization layers to encode constraints and inductive priors has taken hold in recent years. Most existing methods focus on implicitly differentiating Karush-Kuhn-Tucker (KKT) conditions in a way that requires expensive computations on the Jacobian matrix, which can be slow and memory-intensive. In this paper, we developed a new framework, named Alternating Differentiation (Alt-Diff), that differentiates optimization problems (here, specifically in the form of convex optimization problems with polyhedral constraints) in a fast and recursive way. Alt-Diff decouples the differentiation procedure into a primal update and a dual update in an alternating way. Accordingly, Alt-Diff substantially decreases the dimensions of the Jacobian matrix especially for optimization with large-scale constraints and thus increases the computational speed of implicit differentiation. We show that the gradients obtained by Alt-Diff are consistent with those obtained by differentiating KKT conditions. In addition, we propose to truncate Alt-Diff to further accelerate the computational speed. Under some standard assumptions, we show that the truncation error of gradients is upper bounded by the same order of variables' estimation error. Therefore, Alt-Diff can be truncated to further increase computational speed without sacrificing much accuracy. A series of comprehensive experiments validate the superiority of Alt-Diff. © 2023 11th International Conference on Learning Representations, ICLR 2023. All rights reserved.
会议录编者/会议主办者Baidu ; DeepMind ; et al. ; Google Research ; Huawei ; Meta AI
关键词Convex optimization Deep neural networks Multilayer neural networks Network layers Computational speed Convex optimization problems Embeddings Karush Kuhn tucker condition Large-scales Optimisations Optimization problems Polyhedral constraints Standard assumptions Truncation errors
会议名称11th International Conference on Learning Representations, ICLR 2023
会议地点Kigali, Rwanda
会议日期May 1, 2023 - May 5, 2023
收录类别EI
语种英语
出版者International Conference on Learning Representations, ICLR
EI入藏号20243116791627
EI主题词Jacobian matrices
EI分类号461.4 Ergonomics and Human Factors Engineering ; 723 Computer Software, Data Handling and Applications ; 921.1 Algebra
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/407255
专题信息科学与技术学院_PI研究组_石野组
信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_汪婧雅组
通讯作者Shi, Ye
作者单位
1.ShanghaiTech University, China;
2.University of Technology Sydney, Australia;
3.Princeton University, United States;
4.JD Explore Academy
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Sun, Haixiang,Shi, Ye,Wang, Jingya,et al. ALTERNATING DIFFERENTIATION FOR OPTIMIZATION LAYERS[C]//Baidu, DeepMind, et al., Google Research, Huawei, Meta AI:International Conference on Learning Representations, ICLR,2023.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Sun, Haixiang]的文章
[Shi, Ye]的文章
[Wang, Jingya]的文章
百度学术
百度学术中相似的文章
[Sun, Haixiang]的文章
[Shi, Ye]的文章
[Wang, Jingya]的文章
必应学术
必应学术中相似的文章
[Sun, Haixiang]的文章
[Shi, Ye]的文章
[Wang, Jingya]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。