Adaptive Deep Density Approximation for Stochastic Dynamical Systems
2025-03-01
发表期刊JOURNAL OF SCIENTIFIC COMPUTING (IF:2.8[JCR-2023],2.7[5-Year])
ISSN0885-7474
EISSN1573-7691
卷号102期号:3
发表状态已发表
DOI10.1007/s10915-025-02791-7
摘要In this paper we consider adaptive deep neural network approximation for stochastic dynamical systems. Based on the continuity equation associated with the stochastic dynamical systems, a new temporal KRnet (tKRnet) is proposed to approximate the probability density functions (PDFs) of the state variables. The tKRnet provides an explicit density model for the solution of the continuity equation, which alleviates the curse of dimensionality issue that limits the application of traditional grid-based numerical methods. To efficiently train the tKRnet, an adaptive procedure is developed to generate collocation points for the corresponding residual loss function, where samples are generated iteratively using the approximate density function at each iteration. A temporal decomposition technique is also employed to improve the long-time integration. Theoretical analysis of our proposed method is provided, and numerical examples are presented to demonstrate its performance.
关键词Stochastic dynamical systems Continuity equation Deep neural networks Normalizing flows
URL查看原文
收录类别SCI ; EI
语种英语
资助项目National Natural Science Foundation of China[1207129112071291] ; Model Reduction Theory and Algorithms for Complex Systems Program of Institute of Mathematical Sciences, Shanghai Tech University[2024X0303-902-01] ; NSF[DMS1913163]
WOS研究方向Mathematics
WOS类目Mathematics, Applied
WOS记录号WOS:001400883400002
出版者SPRINGER/PLENUM PUBLISHERS
EI入藏号20250717882536
EI主题词Stochastic systems
EI分类号1101.2.1 Deep Learning ; 1201.9 Numerical Methods ; 1202.1 Probability Theory ; 1301.1.2 Physical Properties of Gases, Liquids and Solids
原始文献类型Journal article (JA)
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/398570
专题信息科学与技术学院
信息科学与技术学院_PI研究组_廖奇峰组
信息科学与技术学院_博士生
通讯作者Liao, Qifeng
作者单位
1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
2.Louisiana State Univ, Dept Math, Baton Rouge, LA 70803, USA
3.Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803, USA
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
He, Junjie,Liao, Qifeng,Wan, Xiaoliang. Adaptive Deep Density Approximation for Stochastic Dynamical Systems[J]. JOURNAL OF SCIENTIFIC COMPUTING,2025,102(3).
APA He, Junjie,Liao, Qifeng,&Wan, Xiaoliang.(2025).Adaptive Deep Density Approximation for Stochastic Dynamical Systems.JOURNAL OF SCIENTIFIC COMPUTING,102(3).
MLA He, Junjie,et al."Adaptive Deep Density Approximation for Stochastic Dynamical Systems".JOURNAL OF SCIENTIFIC COMPUTING 102.3(2025).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[He, Junjie]的文章
[Liao, Qifeng]的文章
[Wan, Xiaoliang]的文章
百度学术
百度学术中相似的文章
[He, Junjie]的文章
[Liao, Qifeng]的文章
[Wan, Xiaoliang]的文章
必应学术
必应学术中相似的文章
[He, Junjie]的文章
[Liao, Qifeng]的文章
[Wan, Xiaoliang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。