ShanghaiTech University Knowledge Management System
Adaptive Deep Density Approximation for Stochastic Dynamical Systems | |
2025-03-01 | |
发表期刊 | JOURNAL OF SCIENTIFIC COMPUTING (IF:2.8[JCR-2023],2.7[5-Year]) |
ISSN | 0885-7474 |
EISSN | 1573-7691 |
卷号 | 102期号:3 |
发表状态 | 已发表 |
DOI | 10.1007/s10915-025-02791-7 |
摘要 | In this paper we consider adaptive deep neural network approximation for stochastic dynamical systems. Based on the continuity equation associated with the stochastic dynamical systems, a new temporal KRnet (tKRnet) is proposed to approximate the probability density functions (PDFs) of the state variables. The tKRnet provides an explicit density model for the solution of the continuity equation, which alleviates the curse of dimensionality issue that limits the application of traditional grid-based numerical methods. To efficiently train the tKRnet, an adaptive procedure is developed to generate collocation points for the corresponding residual loss function, where samples are generated iteratively using the approximate density function at each iteration. A temporal decomposition technique is also employed to improve the long-time integration. Theoretical analysis of our proposed method is provided, and numerical examples are presented to demonstrate its performance. |
关键词 | Stochastic dynamical systems Continuity equation Deep neural networks Normalizing flows |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[1207129112071291] ; Model Reduction Theory and Algorithms for Complex Systems Program of Institute of Mathematical Sciences, Shanghai Tech University[2024X0303-902-01] ; NSF[DMS1913163] |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics, Applied |
WOS记录号 | WOS:001400883400002 |
出版者 | SPRINGER/PLENUM PUBLISHERS |
EI入藏号 | 20250717882536 |
EI主题词 | Stochastic systems |
EI分类号 | 1101.2.1 Deep Learning ; 1201.9 Numerical Methods ; 1202.1 Probability Theory ; 1301.1.2 Physical Properties of Gases, Liquids and Solids |
原始文献类型 | Journal article (JA) |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/398570 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_廖奇峰组 信息科学与技术学院_博士生 |
通讯作者 | Liao, Qifeng |
作者单位 | 1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China 2.Louisiana State Univ, Dept Math, Baton Rouge, LA 70803, USA 3.Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803, USA |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | He, Junjie,Liao, Qifeng,Wan, Xiaoliang. Adaptive Deep Density Approximation for Stochastic Dynamical Systems[J]. JOURNAL OF SCIENTIFIC COMPUTING,2025,102(3). |
APA | He, Junjie,Liao, Qifeng,&Wan, Xiaoliang.(2025).Adaptive Deep Density Approximation for Stochastic Dynamical Systems.JOURNAL OF SCIENTIFIC COMPUTING,102(3). |
MLA | He, Junjie,et al."Adaptive Deep Density Approximation for Stochastic Dynamical Systems".JOURNAL OF SCIENTIFIC COMPUTING 102.3(2025). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。