消息
×
loading..
Multi-Space Alignments Towards Universal LiDAR Segmentation
2024-05-02
会议录名称ARXIV
ISSN1063-6919
发表状态已发表
DOIarXiv:2405.01538
摘要

A unified and versatile LiDAR segmentation model with strong robustness and generalizability is desirable for safe autonomous driving perception. This work presents M3Net, a one-of-a-kind framework for fulfilling multi-task, multi-dataset, multi-modality LiDAR segmentation in a universal manner using just a single set of parameters. To better exploit data volume and diversity, we first combine large-scale driving datasets acquired by different types of sensors from diverse scenes and then conduct alignments in three spaces, namely data, feature, and label spaces, during the training. As a result, M3Net is capable of taming heterogeneous data for training state-of-the-art LiDAR segmentation models. Extensive experiments on twelve LiDAR segmentation datasets verify our effectiveness. Notably, using a shared set of parameters, M3Net achieves 75.1%, 83.1%, and 72.4% mIoU scores, respectively, on the official benchmarks of SemanticKITTI, nuScenes, and Waymo Open.

会议地点Seattle, WA, USA
会议日期16-22 June 2024
URL查看原文
资助项目NSFC[
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Software Engineering
WOS记录号PPRN:88728517
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/398567
专题信息科学与技术学院_PI研究组_马月昕
通讯作者Liu, Youquan
作者单位
1.ShanghaiTech Univ, Shanghai, Peoples R China
2.Shanghai AI Lab, Shanghai, Peoples R China
3.Natl Univ Singapore, Singapore, Singapore
4.Univ Hong Kong, Hong Kong, Peoples R China
5.East China Normal Univ, Shanghai, Peoples R China
6.Nanyang Technol Univ, S Lab, Singapore, Singapore
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Liu, Youquan,Kong, Lingdong,Wu, Xiaoyang,et al. Multi-Space Alignments Towards Universal LiDAR Segmentation[C],2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Liu, Youquan]的文章
[Kong, Lingdong]的文章
[Wu, Xiaoyang]的文章
百度学术
百度学术中相似的文章
[Liu, Youquan]的文章
[Kong, Lingdong]的文章
[Wu, Xiaoyang]的文章
必应学术
必应学术中相似的文章
[Liu, Youquan]的文章
[Kong, Lingdong]的文章
[Wu, Xiaoyang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。