| |||||||
ShanghaiTech University Knowledge Management System
Multi-Space Alignments Towards Universal LiDAR Segmentation | |
2024-05-02 | |
会议录名称 | ARXIV |
ISSN | 1063-6919 |
发表状态 | 已发表 |
DOI | arXiv:2405.01538 |
摘要 | A unified and versatile LiDAR segmentation model with strong robustness and generalizability is desirable for safe autonomous driving perception. This work presents M3Net, a one-of-a-kind framework for fulfilling multi-task, multi-dataset, multi-modality LiDAR segmentation in a universal manner using just a single set of parameters. To better exploit data volume and diversity, we first combine large-scale driving datasets acquired by different types of sensors from diverse scenes and then conduct alignments in three spaces, namely data, feature, and label spaces, during the training. As a result, M3Net is capable of taming heterogeneous data for training state-of-the-art LiDAR segmentation models. Extensive experiments on twelve LiDAR segmentation datasets verify our effectiveness. Notably, using a shared set of parameters, M3Net achieves 75.1%, 83.1%, and 72.4% mIoU scores, respectively, on the official benchmarks of SemanticKITTI, nuScenes, and Waymo Open. |
会议地点 | Seattle, WA, USA |
会议日期 | 16-22 June 2024 |
URL | 查看原文 |
资助项目 | NSFC[ |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Software Engineering |
WOS记录号 | PPRN:88728517 |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/398567 |
专题 | 信息科学与技术学院_PI研究组_马月昕 |
通讯作者 | Liu, Youquan |
作者单位 | 1.ShanghaiTech Univ, Shanghai, Peoples R China 2.Shanghai AI Lab, Shanghai, Peoples R China 3.Natl Univ Singapore, Singapore, Singapore 4.Univ Hong Kong, Hong Kong, Peoples R China 5.East China Normal Univ, Shanghai, Peoples R China 6.Nanyang Technol Univ, S Lab, Singapore, Singapore |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Liu, Youquan,Kong, Lingdong,Wu, Xiaoyang,et al. Multi-Space Alignments Towards Universal LiDAR Segmentation[C],2024. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。