ShanghaiTech University Knowledge Management System
Harmonizing Generalization and Personalization in Federated Prompt Learning | |
2024-05-16 | |
状态 | 已发表 |
摘要 | Federated Prompt Learning (FPL) incorporates large pre -trained Vision -Language models (VLM) into federated learning through prompt tuning. The transferable representations and remarkable generalization capacity of VLM make them highly compatible with the integration of federated learning. Addressing data heterogeneity in federated learning requires personalization, but excessive focus on it across clients could compromise the model’s ability to generalize effectively. To preserve the impressive generalization capability of VLM, it is crucial to strike a balance between personalization and generalization in FPL. To tackle this challenge, we proposed Fed erated P rompt Learning with CLIP G eneralization and low -rank P ersonalization (FedPGP), which employs pre -trained CLIP to provide knowledgeguidance on the global prompt for improved generalization and incorporates a low -rank adaptation term to personalize the global prompt. Further, FedPGP integrates a prompt -wise contrastive loss to achieve knowledge guidance and personalized adaptation simultaneously, enabling a harmonious balance between personalization and generalization in FPL. We conduct extensive experiments on various datasets to explore base -to -novel generalization in both category -level and domain -level scenarios with heterogeneous data, showing the superiority of FedPGP in balancing generalization and personalization. |
DOI | arXiv:2405.09771 |
相关网址 | 查看原文 |
出处 | Arxiv |
WOS记录号 | PPRN:89077349 |
WOS类目 | Computer Science, Artificial Intelligence |
资助项目 | NSFC[ |
文献类型 | 预印本 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/387324 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_汪婧雅组 信息科学与技术学院_PI研究组_石野组 |
通讯作者 | Shi, Ye |
作者单位 | ShanghaiTech Univ, Shanghai, Peoples R China |
推荐引用方式 GB/T 7714 | Cui, Tianyu,Li, Hongxia,Wang, Jingya,et al. Harmonizing Generalization and Personalization in Federated Prompt Learning. 2024. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。