Harmonizing Generalization and Personalization in Federated Prompt Learning
2024-05-16
状态已发表
摘要

Federated Prompt Learning (FPL) incorporates large pre -trained Vision -Language models (VLM) into federated learning through prompt tuning. The transferable representations and remarkable generalization capacity of VLM make them highly compatible with the integration of federated learning. Addressing data heterogeneity in federated learning requires personalization, but excessive focus on it across clients could compromise the model’s ability to generalize effectively. To preserve the impressive generalization capability of VLM, it is crucial to strike a balance between personalization and generalization in FPL. To tackle this challenge, we proposed Fed erated P rompt Learning with CLIP G eneralization and low -rank P ersonalization (FedPGP), which employs pre -trained CLIP to provide knowledgeguidance on the global prompt for improved generalization and incorporates a low -rank adaptation term to personalize the global prompt. Further, FedPGP integrates a prompt -wise contrastive loss to achieve knowledge guidance and personalized adaptation simultaneously, enabling a harmonious balance between personalization and generalization in FPL. We conduct extensive experiments on various datasets to explore base -to -novel generalization in both category -level and domain -level scenarios with heterogeneous data, showing the superiority of FedPGP in balancing generalization and personalization.

DOIarXiv:2405.09771
相关网址查看原文
出处Arxiv
WOS记录号PPRN:89077349
WOS类目Computer Science, Artificial Intelligence
资助项目NSFC[
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/387324
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_汪婧雅组
信息科学与技术学院_PI研究组_石野组
通讯作者Shi, Ye
作者单位
ShanghaiTech Univ, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Cui, Tianyu,Li, Hongxia,Wang, Jingya,et al. Harmonizing Generalization and Personalization in Federated Prompt Learning. 2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Cui, Tianyu]的文章
[Li, Hongxia]的文章
[Wang, Jingya]的文章
百度学术
百度学术中相似的文章
[Cui, Tianyu]的文章
[Li, Hongxia]的文章
[Wang, Jingya]的文章
必应学术
必应学术中相似的文章
[Cui, Tianyu]的文章
[Li, Hongxia]的文章
[Wang, Jingya]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。