Empowering Robotics with Large Language Models: osmAG Map Comprehension with LLMs
2024-03-13
状态已发表
摘要

Recently, Large Language Models (LLMs) have demonstrated great potential in robotic applications by providing essential general knowledge for situations that can not be pre-programmed beforehand. Generally speaking, mobile robots need to understand maps to execute tasks such as localization or navigation. In this letter, we address the problem of enabling LLMs to comprehend Area Graph, a text-based map representation, in order to enhance their applicability in the field of mobile robotics. Area Graph is a hierarchical, topometric semantic map representation utilizing polygons to demark areas such as rooms, corridors or buildings. In contrast to commonly used map representations, such as occupancy grid maps or point clouds, osmAG (Area Graph in OpensStreetMap format) is stored in a XML textual format naturally readable by LLMs. Furthermore, conventional robotic algorithms such as localization and path planning are compatible with osmAG, facilitating this map representation comprehensible by LLMs, traditional robotic algorithms and humans. Our experiments show that with a proper map representation, LLMs possess the capability to understand maps and answer queries based on that understanding. Following simple fine-tuning of LLaMA2 models, it surpassed ChatGPT-3.5 in tasks involving topology and hierarchy understanding. 

关键词LLM Map Representation Path Planning
DOIarXiv:2403.08228
相关网址查看原文
出处Arxiv
WOS记录号PPRN:88127293
WOS类目Computer Science, Artificial Intelligence
资助项目Shanghai Frontiers Science Center of Human-centered Artificial Intelligence[22JC1410700]
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/372972
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_Sören Schwertfeger组
通讯作者Xie, Fujing
作者单位
ShanghaiTech Univ, Key Lab Intelligent Percept & Human, Machine Collaborat, Minist Educ, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Xie, Fujing,Schwertfeger, Soeren. Empowering Robotics with Large Language Models: osmAG Map Comprehension with LLMs. 2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xie, Fujing]的文章
[Schwertfeger, Soeren]的文章
百度学术
百度学术中相似的文章
[Xie, Fujing]的文章
[Schwertfeger, Soeren]的文章
必应学术
必应学术中相似的文章
[Xie, Fujing]的文章
[Schwertfeger, Soeren]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。