ShanghaiTech University Knowledge Management System
Empowering Robotics with Large Language Models: osmAG Map Comprehension with LLMs | |
2024-03-13 | |
状态 | 已发表 |
摘要 | Recently, Large Language Models (LLMs) have demonstrated great potential in robotic applications by providing essential general knowledge for situations that can not be pre-programmed beforehand. Generally speaking, mobile robots need to understand maps to execute tasks such as localization or navigation. In this letter, we address the problem of enabling LLMs to comprehend Area Graph, a text-based map representation, in order to enhance their applicability in the field of mobile robotics. Area Graph is a hierarchical, topometric semantic map representation utilizing polygons to demark areas such as rooms, corridors or buildings. In contrast to commonly used map representations, such as occupancy grid maps or point clouds, osmAG (Area Graph in OpensStreetMap format) is stored in a XML textual format naturally readable by LLMs. Furthermore, conventional robotic algorithms such as localization and path planning are compatible with osmAG, facilitating this map representation comprehensible by LLMs, traditional robotic algorithms and humans. Our experiments show that with a proper map representation, LLMs possess the capability to understand maps and answer queries based on that understanding. Following simple fine-tuning of LLaMA2 models, it surpassed ChatGPT-3.5 in tasks involving topology and hierarchy understanding. |
关键词 | LLM Map Representation Path Planning |
DOI | arXiv:2403.08228 |
相关网址 | 查看原文 |
出处 | Arxiv |
WOS记录号 | PPRN:88127293 |
WOS类目 | Computer Science, Artificial Intelligence |
资助项目 | Shanghai Frontiers Science Center of Human-centered Artificial Intelligence[22JC1410700] |
文献类型 | 预印本 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/372972 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_Sören Schwertfeger组 |
通讯作者 | Xie, Fujing |
作者单位 | ShanghaiTech Univ, Key Lab Intelligent Percept & Human, Machine Collaborat, Minist Educ, Shanghai, Peoples R China |
推荐引用方式 GB/T 7714 | Xie, Fujing,Schwertfeger, Soeren. Empowering Robotics with Large Language Models: osmAG Map Comprehension with LLMs. 2024. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Xie, Fujing]的文章 |
[Schwertfeger, Soeren]的文章 |
百度学术 |
百度学术中相似的文章 |
[Xie, Fujing]的文章 |
[Schwertfeger, Soeren]的文章 |
必应学术 |
必应学术中相似的文章 |
[Xie, Fujing]的文章 |
[Schwertfeger, Soeren]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。