UniSeg: A Unified Multi-Modal LiDAR Segmentation Network and the OpenPCSeg Codebase
2023
会议录名称PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION
ISSN1550-5499
页码21605-21616
发表状态已发表
DOI10.1109/ICCV51070.2023.01980
摘要Point-, voxel-, and range-views are three representative forms of point clouds. All of them have accurate 3D measurements but lack color and texture information. RGB images are a natural complement to these point cloud views and fully utilizing the comprehensive information of them benefits more robust perceptions. In this paper, we present a unified multi-modal LiDAR segmentation network, termed UniSeg, which leverages the information of RGB images and three views of the point cloud, and accomplishes semantic segmentation and panoptic segmentation simultaneously. Specifically, we first design the Learnable cross-Modal Association (LMA) module to automatically fuse voxel-view and range-view features with image features, which fully utilize the rich semantic information of images and are robust to calibration errors. Then, the enhanced voxel-view and range-view features are transformed to the point space, where three views of point cloud features are further fused adaptively by the Learnable cross-View Association module (LVA). Notably, UniSeg achieves promising results in three public benchmarks, i.e., SemanticKITTI, nuScenes, and Waymo Open Dataset (WOD); it ranks 1st on two challenges of two benchmarks, including the LiDAR semantic segmentation challenge of nuScenes and panoptic segmentation challenges of SemanticKITTI. Besides, we construct the OpenPCSeg codebase, which is the largest and most comprehensive outdoor LiDAR segmentation codebase. It contains most of the popular outdoor LiDAR segmentation algorithms and provides reproducible implementations. The OpenPCSeg codebase will be made publicly available at https://github.com/PJLab-ADG/PCSeg. © 2023 IEEE.
会议名称2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
出版地10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
会议地点Paris, France
会议日期October 2, 2023 - October 6, 2023
URL查看原文
收录类别EI ; CPCI-S
语种英语
资助项目Science and Technology Commission of Shanghai Municipality[22DZ1100102]
WOS研究方向Computer Science ; Imaging Science & Photographic Technology
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Imaging Science & Photographic Technology
WOS记录号WOS:001169500506022
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20240915636214
原始文献类型Conference article (CA)
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/370163
专题信息科学与技术学院_PI研究组_马月昕
通讯作者Bai, Yeqi; Li, Yikang; Hou, Yuenan
作者单位
1.Shanghai Ai Laboratory, China
2.Hochschule Bremerhaven, Germany
3.The University of Hong Kong, Hong Kong
4.East China Normal University, China
5.National University of Singapore, Singapore
6.Fudan University, China
7.The Chinese University of Hong Kong, Hong Kong
8.Shanghai Tech University, China
推荐引用方式
GB/T 7714
Liu, Youquan,Chen, Runnan,Li, Xin,et al. UniSeg: A Unified Multi-Modal LiDAR Segmentation Network and the OpenPCSeg Codebase[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:Institute of Electrical and Electronics Engineers Inc.,2023:21605-21616.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Liu, Youquan]的文章
[Chen, Runnan]的文章
[Li, Xin]的文章
百度学术
百度学术中相似的文章
[Liu, Youquan]的文章
[Chen, Runnan]的文章
[Li, Xin]的文章
必应学术
必应学术中相似的文章
[Liu, Youquan]的文章
[Chen, Runnan]的文章
[Li, Xin]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@ICCV51070.2023.01980.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。