ShanghaiTech University Knowledge Management System
UniSeg: A Unified Multi-Modal LiDAR Segmentation Network and the OpenPCSeg Codebase | |
2023 | |
会议录名称 | PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION |
ISSN | 1550-5499 |
页码 | 21605-21616 |
发表状态 | 已发表 |
DOI | 10.1109/ICCV51070.2023.01980 |
摘要 | Point-, voxel-, and range-views are three representative forms of point clouds. All of them have accurate 3D measurements but lack color and texture information. RGB images are a natural complement to these point cloud views and fully utilizing the comprehensive information of them benefits more robust perceptions. In this paper, we present a unified multi-modal LiDAR segmentation network, termed UniSeg, which leverages the information of RGB images and three views of the point cloud, and accomplishes semantic segmentation and panoptic segmentation simultaneously. Specifically, we first design the Learnable cross-Modal Association (LMA) module to automatically fuse voxel-view and range-view features with image features, which fully utilize the rich semantic information of images and are robust to calibration errors. Then, the enhanced voxel-view and range-view features are transformed to the point space, where three views of point cloud features are further fused adaptively by the Learnable cross-View Association module (LVA). Notably, UniSeg achieves promising results in three public benchmarks, i.e., SemanticKITTI, nuScenes, and Waymo Open Dataset (WOD); it ranks 1st on two challenges of two benchmarks, including the LiDAR semantic segmentation challenge of nuScenes and panoptic segmentation challenges of SemanticKITTI. Besides, we construct the OpenPCSeg codebase, which is the largest and most comprehensive outdoor LiDAR segmentation codebase. It contains most of the popular outdoor LiDAR segmentation algorithms and provides reproducible implementations. The OpenPCSeg codebase will be made publicly available at https://github.com/PJLab-ADG/PCSeg. © 2023 IEEE. |
会议名称 | 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023 |
出版地 | 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA |
会议地点 | Paris, France |
会议日期 | October 2, 2023 - October 6, 2023 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S |
语种 | 英语 |
资助项目 | Science and Technology Commission of Shanghai Municipality[22DZ1100102] |
WOS研究方向 | Computer Science ; Imaging Science & Photographic Technology |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Imaging Science & Photographic Technology |
WOS记录号 | WOS:001169500506022 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20240915636214 |
原始文献类型 | Conference article (CA) |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/370163 |
专题 | 信息科学与技术学院_PI研究组_马月昕 |
通讯作者 | Bai, Yeqi; Li, Yikang; Hou, Yuenan |
作者单位 | 1.Shanghai Ai Laboratory, China 2.Hochschule Bremerhaven, Germany 3.The University of Hong Kong, Hong Kong 4.East China Normal University, China 5.National University of Singapore, Singapore 6.Fudan University, China 7.The Chinese University of Hong Kong, Hong Kong 8.Shanghai Tech University, China |
推荐引用方式 GB/T 7714 | Liu, Youquan,Chen, Runnan,Li, Xin,et al. UniSeg: A Unified Multi-Modal LiDAR Segmentation Network and the OpenPCSeg Codebase[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:Institute of Electrical and Electronics Engineers Inc.,2023:21605-21616. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。