| |||||||
ShanghaiTech University Knowledge Management System
TSP-Transformer: Task-Specific Prompts Boosted Transformer for Holistic Scene Understanding | |
2024 | |
会议录名称 | 2024 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV)
![]() |
ISSN | 2472-6737 |
页码 | 914-923 |
发表状态 | 已发表 |
DOI | 10.1109/WACV57701.2024.00097 |
摘要 | Holistic scene understanding includes semantic segmentation, surface normal estimation, object boundary detection, depth estimation, etc. The key aspect of this problem is to learn representation effectively, as each subtask builds upon not only correlated but also distinct attributes. Inspired by visual-prompt tuning, we propose a Task-Specific Prompts Transformer, dubbed TSP-Transformer, for holistic scene understanding. It features a vanilla transformer in the early stage and tasks-specific prompts transformer encoder in the lateral stage, where tasks-specific prompts are augmented. By doing so, the transformer layer learns the generic information from the shared parts and is endowed with task-specific capacity. First, the tasks-specific prompts serve as induced priors for each task effectively. Moreover, the task-specific prompts can be seen as switches to favor task-specific representation learning for different tasks. Extensive experiments on NYUD-v2 and PASCAL-Context show that our method achieves state-of-the-art performance, validating the effectiveness of our method for holistic scene understanding. We also provide our code in the following link https://github.com/tb2-sy/TSP-Transformer. © 2024 IEEE. |
会议录编者/会议主办者 | CVF ; IEEE Computer Society |
关键词 | Algorithms Image recognition and understanding |
会议名称 | 2024 IEEE Winter Conference on Applications of Computer Vision, WACV 2024 |
会议地点 | Waikoloa, HI, USA |
会议日期 | 3-8 Jan. 2024 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20241816028495 |
EI主题词 | Image recognition |
EI分类号 | 723.2 Data Processing and Image Processing ; 723.4 Artificial Intelligence ; 723.5 Computer Applications ; 741.2 Vision |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/362292 |
专题 | 信息科学与技术学院_PI研究组_高盛华组 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 |
作者单位 | 1.ShanghaiTech University 2.Xiaohongshu Inc. 3.National University of Singapore 4.Fudan University |
第一作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Shuo Wang,Jing Li,Zibo Zhao,et al. TSP-Transformer: Task-Specific Prompts Boosted Transformer for Holistic Scene Understanding[C]//CVF, IEEE Computer Society:Institute of Electrical and Electronics Engineers Inc.,2024:914-923. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Shuo Wang]的文章 |
[Jing Li]的文章 |
[Zibo Zhao]的文章 |
百度学术 |
百度学术中相似的文章 |
[Shuo Wang]的文章 |
[Jing Li]的文章 |
[Zibo Zhao]的文章 |
必应学术 |
必应学术中相似的文章 |
[Shuo Wang]的文章 |
[Jing Li]的文章 |
[Zibo Zhao]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。