NPC: Neural Predictive Control for Fuel-Efficient Autonomous Trucks
2024
会议录名称ICRA, 2024
ISSN1050-4729
页码14251-14257
发表状态已发表
DOI10.1109/ICRA57147.2024.10611146
摘要

Fuel efficiency is a crucial aspect of long-distance cargo transportation by oil-powered trucks that economize on costs and decrease carbon emissions. Current predictive control methods depend on an accurate model of vehicle dynamics and engine, including weight, drag coefficient, and the Brake-specific Fuel Consumption (BSFC) map of the engine. We propose a pure data-driven method, Neural Predictive Control (NPC), which does not use any physical model for the vehicle. After training with over 20,000 km of historical data, the novel proposed NVFormer implicitly models the relationship between vehicle dynamics, road slope, fuel consumption, and control commands using the attention mechanism. Based on the online sampled primitives from the past of the current freight trip and anchor-based future data synthesis, the NVFormer can infer optimal control command for reasonable fuel consumption. The physical model-free NPC outperforms the base PCC method with 2.41% and 3.45% more significant fuel saving in simulation and open-road highway testing, respectively.

会议录编者/会议主办者Beijing NOKOV Science and Technology Co., Ltd. ; et al. ; Kawasaki Heavy Industries, Ltd. ; Kuka AG ; Schunk SE and Co. KG ; ShangHai CHINGMU Tech Ltd
关键词Automobiles Freight transportation Magnetic levitation vehicles Petroleum transportation Truck transportation 'current Accurate modeling Carbon emissions Cargo transportation Control command Fuel efficiency Neural-predictive controls Physical modelling Predictive control methods Vehicle's dynamics
会议名称2024 IEEE International Conference on Robotics and Automation, ICRA 2024
会议地点Yokohama, Japan
会议日期13-17 May 2024
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20243516963510
EI主题词Trucks
EI分类号432.2 Passenger Highway Transportation ; 433 Railroad Transportation ; 436 ; 610.1 ; 662.1 Automobiles ; 663.1 Heavy Duty Motor Vehicles
原始文献类型Conference article (CA)
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/359685
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_马月昕
作者单位
1.Inceptio Technology, Shanghai, China
2.Tongji University, Shanghai, China
3.ShanghaiTech University, Shanghai, China
4.Nanjing University of Posts and Telecommunications, Nanjing, China
推荐引用方式
GB/T 7714
Jiaping Ren,Jiahao Xiang,Hongfei Gao,et al. NPC: Neural Predictive Control for Fuel-Efficient Autonomous Trucks[C]//Beijing NOKOV Science and Technology Co., Ltd., et al., Kawasaki Heavy Industries, Ltd., Kuka AG, Schunk SE and Co. KG, ShangHai CHINGMU Tech Ltd:Institute of Electrical and Electronics Engineers Inc.,2024:14251-14257.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Jiaping Ren]的文章
[Jiahao Xiang]的文章
[Hongfei Gao]的文章
百度学术
百度学术中相似的文章
[Jiaping Ren]的文章
[Jiahao Xiang]的文章
[Hongfei Gao]的文章
必应学术
必应学术中相似的文章
[Jiaping Ren]的文章
[Jiahao Xiang]的文章
[Hongfei Gao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。