ShanghaiTech University Knowledge Management System
NPC: Neural Predictive Control for Fuel-Efficient Autonomous Trucks | |
2024 | |
会议录名称 | ICRA, 2024 |
ISSN | 1050-4729 |
页码 | 14251-14257 |
发表状态 | 已发表 |
DOI | 10.1109/ICRA57147.2024.10611146 |
摘要 | Fuel efficiency is a crucial aspect of long-distance cargo transportation by oil-powered trucks that economize on costs and decrease carbon emissions. Current predictive control methods depend on an accurate model of vehicle dynamics and engine, including weight, drag coefficient, and the Brake-specific Fuel Consumption (BSFC) map of the engine. We propose a pure data-driven method, Neural Predictive Control (NPC), which does not use any physical model for the vehicle. After training with over 20,000 km of historical data, the novel proposed NVFormer implicitly models the relationship between vehicle dynamics, road slope, fuel consumption, and control commands using the attention mechanism. Based on the online sampled primitives from the past of the current freight trip and anchor-based future data synthesis, the NVFormer can infer optimal control command for reasonable fuel consumption. The physical model-free NPC outperforms the base PCC method with 2.41% and 3.45% more significant fuel saving in simulation and open-road highway testing, respectively. |
会议录编者/会议主办者 | Beijing NOKOV Science and Technology Co., Ltd. ; et al. ; Kawasaki Heavy Industries, Ltd. ; Kuka AG ; Schunk SE and Co. KG ; ShangHai CHINGMU Tech Ltd |
关键词 | Automobiles Freight transportation Magnetic levitation vehicles Petroleum transportation Truck transportation 'current Accurate modeling Carbon emissions Cargo transportation Control command Fuel efficiency Neural-predictive controls Physical modelling Predictive control methods Vehicle's dynamics |
会议名称 | 2024 IEEE International Conference on Robotics and Automation, ICRA 2024 |
会议地点 | Yokohama, Japan |
会议日期 | 13-17 May 2024 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20243516963510 |
EI主题词 | Trucks |
EI分类号 | 432.2 Passenger Highway Transportation ; 433 Railroad Transportation ; 436 ; 610.1 ; 662.1 Automobiles ; 663.1 Heavy Duty Motor Vehicles |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/359685 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_马月昕 |
作者单位 | 1.Inceptio Technology, Shanghai, China 2.Tongji University, Shanghai, China 3.ShanghaiTech University, Shanghai, China 4.Nanjing University of Posts and Telecommunications, Nanjing, China |
推荐引用方式 GB/T 7714 | Jiaping Ren,Jiahao Xiang,Hongfei Gao,et al. NPC: Neural Predictive Control for Fuel-Efficient Autonomous Trucks[C]//Beijing NOKOV Science and Technology Co., Ltd., et al., Kawasaki Heavy Industries, Ltd., Kuka AG, Schunk SE and Co. KG, ShangHai CHINGMU Tech Ltd:Institute of Electrical and Electronics Engineers Inc.,2024:14251-14257. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。