Robust residual-guided iterative reconstruction for sparse-view CT in small animal imaging
2024-03-20
发表期刊PHYSICS IN MEDICINE & BIOLOGY (IF:3.3[JCR-2023],3.4[5-Year])
ISSN0031-9155
EISSN1361-6560
卷号69期号:10
发表状态已发表
DOI10.1088/1361-6560/ad360a
摘要Objective. We introduce a robust image reconstruction algorithm named residual-guided Golub-Kahan iterative reconstruction technique (RGIRT) designed for sparse-view computed tomography (CT), which aims at high-fidelity image reconstruction from a limited number of projection views. Approach. RGIRT utilizes an inner-outer dual iteration framework, with a flexible least square QR (FLSQR) algorithm implemented in the inner iteration and a restarted iterative scheme applied in the outer iteration. The inner FLSQR employs a flexible Golub-Kahan bidiagonalization method to reduce the size of the inverse problem, and a weighted generalized cross-validation method to adaptively estimate the regularization hyper-parameter. The inner iteration efficiently yields the intermediate reconstruction result, while the outer iteration minimizes the residual and refines the solution by using the result obtained from the inner iteration. Main results. The reconstruction performance of RGIRT is evaluated and compared to other reference methods (FBPConvNet, SART-TV, and FLSQR) using projection data from both numerical phantoms and real experimental Micro-CT data. The experimental findings, from testing various numbers of projection views and different noise levels, underscore the robustness of RGIRT. Meanwhile, theoretical analysis confirms the convergence of residual for our approach. Significance. We propose a robust iterative reconstruction algorithm for x-ray CT scans with sparse views, thereby shortening scanning time and mitigating excessive ionizing radiation exposure to small animals.
关键词sparse-view CT image reconstruction inverse problem Golub-Kahan process regularization
URL查看原文
收录类别SCI ; EI
语种英语
资助项目National Natural Science Foundation of China["12101406","62105205","62273238"] ; null[21YF1429100]
WOS研究方向Engineering ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001209449700001
出版者IOP Publishing Ltd
EI入藏号20241916036862
EI主题词Image reconstruction
EI分类号723.5 Computer Applications ; 921.6 Numerical Methods
原始文献类型Journal article (JA)
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/357360
专题信息科学与技术学院_PI研究组_任无畏组
信息科学与技术学院_硕士生
生物医学工程学院
生物医学工程学院_PI研究组_曹国华组
通讯作者Cao, Guohua; Ren, Wuwei; Jiang, Jiahua
作者单位
1.School of Information Science and Technology, ShanghaiTech University
2.School of Biomedical Engineering, ShanghaiTech University
3.United Imaging Healthcare Co., Ltd
4.School of Mathematics, University of Birmingham, Edgbaston
第一作者单位信息科学与技术学院
通讯作者单位生物医学工程学院;  信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Zhang, Jianru,Wang, Zhe,Cao, Tuoyu,et al. Robust residual-guided iterative reconstruction for sparse-view CT in small animal imaging[J]. PHYSICS IN MEDICINE & BIOLOGY,2024,69(10).
APA Zhang, Jianru,Wang, Zhe,Cao, Tuoyu,Cao, Guohua,Ren, Wuwei,&Jiang, Jiahua.(2024).Robust residual-guided iterative reconstruction for sparse-view CT in small animal imaging.PHYSICS IN MEDICINE & BIOLOGY,69(10).
MLA Zhang, Jianru,et al."Robust residual-guided iterative reconstruction for sparse-view CT in small animal imaging".PHYSICS IN MEDICINE & BIOLOGY 69.10(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Jianru]的文章
[Wang, Zhe]的文章
[Cao, Tuoyu]的文章
百度学术
百度学术中相似的文章
[Zhang, Jianru]的文章
[Wang, Zhe]的文章
[Cao, Tuoyu]的文章
必应学术
必应学术中相似的文章
[Zhang, Jianru]的文章
[Wang, Zhe]的文章
[Cao, Tuoyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。