ShanghaiTech University Knowledge Management System
Robust residual-guided iterative reconstruction for sparse-view CT in small animal imaging | |
2024-03-20 | |
发表期刊 | PHYSICS IN MEDICINE & BIOLOGY (IF:3.3[JCR-2023],3.4[5-Year]) |
ISSN | 0031-9155 |
EISSN | 1361-6560 |
卷号 | 69期号:10 |
发表状态 | 已发表 |
DOI | 10.1088/1361-6560/ad360a |
摘要 | Objective. We introduce a robust image reconstruction algorithm named residual-guided Golub-Kahan iterative reconstruction technique (RGIRT) designed for sparse-view computed tomography (CT), which aims at high-fidelity image reconstruction from a limited number of projection views. Approach. RGIRT utilizes an inner-outer dual iteration framework, with a flexible least square QR (FLSQR) algorithm implemented in the inner iteration and a restarted iterative scheme applied in the outer iteration. The inner FLSQR employs a flexible Golub-Kahan bidiagonalization method to reduce the size of the inverse problem, and a weighted generalized cross-validation method to adaptively estimate the regularization hyper-parameter. The inner iteration efficiently yields the intermediate reconstruction result, while the outer iteration minimizes the residual and refines the solution by using the result obtained from the inner iteration. Main results. The reconstruction performance of RGIRT is evaluated and compared to other reference methods (FBPConvNet, SART-TV, and FLSQR) using projection data from both numerical phantoms and real experimental Micro-CT data. The experimental findings, from testing various numbers of projection views and different noise levels, underscore the robustness of RGIRT. Meanwhile, theoretical analysis confirms the convergence of residual for our approach. Significance. We propose a robust iterative reconstruction algorithm for x-ray CT scans with sparse views, thereby shortening scanning time and mitigating excessive ionizing radiation exposure to small animals. |
关键词 | sparse-view CT image reconstruction inverse problem Golub-Kahan process regularization |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China["12101406","62105205","62273238"] ; null[21YF1429100] |
WOS研究方向 | Engineering ; Radiology, Nuclear Medicine & Medical Imaging |
WOS类目 | Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:001209449700001 |
出版者 | IOP Publishing Ltd |
EI入藏号 | 20241916036862 |
EI主题词 | Image reconstruction |
EI分类号 | 723.5 Computer Applications ; 921.6 Numerical Methods |
原始文献类型 | Journal article (JA) |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/357360 |
专题 | 信息科学与技术学院_PI研究组_任无畏组 信息科学与技术学院_硕士生 生物医学工程学院 生物医学工程学院_PI研究组_曹国华组 |
通讯作者 | Cao, Guohua; Ren, Wuwei; Jiang, Jiahua |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University 2.School of Biomedical Engineering, ShanghaiTech University 3.United Imaging Healthcare Co., Ltd 4.School of Mathematics, University of Birmingham, Edgbaston |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 生物医学工程学院; 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Zhang, Jianru,Wang, Zhe,Cao, Tuoyu,et al. Robust residual-guided iterative reconstruction for sparse-view CT in small animal imaging[J]. PHYSICS IN MEDICINE & BIOLOGY,2024,69(10). |
APA | Zhang, Jianru,Wang, Zhe,Cao, Tuoyu,Cao, Guohua,Ren, Wuwei,&Jiang, Jiahua.(2024).Robust residual-guided iterative reconstruction for sparse-view CT in small animal imaging.PHYSICS IN MEDICINE & BIOLOGY,69(10). |
MLA | Zhang, Jianru,et al."Robust residual-guided iterative reconstruction for sparse-view CT in small animal imaging".PHYSICS IN MEDICINE & BIOLOGY 69.10(2024). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。