Physics-Guided Deep Learning Model for Photon-Counting CT Material Decomposition
2023
会议录名称2023 IEEE NUCLEAR SCIENCE SYMPOSIUM, MEDICAL IMAGING CONFERENCE AND INTERNATIONAL SYMPOSIUM ON ROOM-TEMPERATURE SEMICONDUCTOR DETECTORS (NSS MIC RTSD)
ISSN1082-3654
发表状态已发表
DOI10.1109/NSSMICRTSD49126.2023.10338778
摘要

Photon-counting computed tomography (PCCT) is an industry-recognized next-generation CT technology. By utilizing a photon counting detector that provides information on object interaction that varies with different energy photons, physicians can differentiate materials in objects through material decomposition, enabling numerous medical applications such as detecting tumors or characterizing kidney stones. However, due to charge-sharing effects, application-specific integrated circuit (ASIC) pile-up effects, and Compton scattering in PCCT, there exists a mismatch between the real-world physical effects and the ideal assumptions used in the physics model, which can result in significant errors in material decomposition. To address this problem, this paper proposes a physics-guided deep-learning model for material decomposition. We construct a physics simulation model that can simulate the response of the PCCT system under different physics parameters and use it to build a training dataset. We then train a neural network on this dataset to learn the response of the CT detector and ASIC under different physics parameters. Next, we conduct a calibration experiment to adjust the parameters to reduce the difference between the neural network predictions and the actual data. During imaging, we calculate the thickness information of the detected substance by solving an optimization problem based on the physics parameters of the CT detector and the actual response of the CT detector. In summary, our proposed method addresses the problem of physical effects that deviate from the ideal physics model. Our method uses a small amount of experimental data and could be implemented in a real clinical setting.

关键词Computed Tomography Medical services
会议地点Vancouver, BC, Canada
会议日期4-11 Nov. 2023
URL查看原文
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/354916
专题生物医学工程学院
生命科学与技术学院_硕士生
信息科学与技术学院_硕士生
生物医学工程学院_PI研究组_赖晓春组
生物医学工程学院_博士生
作者单位
School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
第一作者单位生物医学工程学院
第一作者的第一单位生物医学工程学院
推荐引用方式
GB/T 7714
X. Yu,W. Qin,T. Zhong,et al. Physics-Guided Deep Learning Model for Photon-Counting CT Material Decomposition[C],2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[X. Yu]的文章
[W. Qin]的文章
[T. Zhong]的文章
百度学术
百度学术中相似的文章
[X. Yu]的文章
[W. Qin]的文章
[T. Zhong]的文章
必应学术
必应学术中相似的文章
[X. Yu]的文章
[W. Qin]的文章
[T. Zhong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。