ShanghaiTech University Knowledge Management System
Physics-Guided Deep Learning Model for Photon-Counting CT Material Decomposition | |
2023 | |
会议录名称 | 2023 IEEE NUCLEAR SCIENCE SYMPOSIUM, MEDICAL IMAGING CONFERENCE AND INTERNATIONAL SYMPOSIUM ON ROOM-TEMPERATURE SEMICONDUCTOR DETECTORS (NSS MIC RTSD)
![]() |
ISSN | 1082-3654 |
发表状态 | 已发表 |
DOI | 10.1109/NSSMICRTSD49126.2023.10338778 |
摘要 | Photon-counting computed tomography (PCCT) is an industry-recognized next-generation CT technology. By utilizing a photon counting detector that provides information on object interaction that varies with different energy photons, physicians can differentiate materials in objects through material decomposition, enabling numerous medical applications such as detecting tumors or characterizing kidney stones. However, due to charge-sharing effects, application-specific integrated circuit (ASIC) pile-up effects, and Compton scattering in PCCT, there exists a mismatch between the real-world physical effects and the ideal assumptions used in the physics model, which can result in significant errors in material decomposition. To address this problem, this paper proposes a physics-guided deep-learning model for material decomposition. We construct a physics simulation model that can simulate the response of the PCCT system under different physics parameters and use it to build a training dataset. We then train a neural network on this dataset to learn the response of the CT detector and ASIC under different physics parameters. Next, we conduct a calibration experiment to adjust the parameters to reduce the difference between the neural network predictions and the actual data. During imaging, we calculate the thickness information of the detected substance by solving an optimization problem based on the physics parameters of the CT detector and the actual response of the CT detector. In summary, our proposed method addresses the problem of physical effects that deviate from the ideal physics model. Our method uses a small amount of experimental data and could be implemented in a real clinical setting. |
关键词 | Computed Tomography Medical services |
会议地点 | Vancouver, BC, Canada |
会议日期 | 4-11 Nov. 2023 |
URL | 查看原文 |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/354916 |
专题 | 生物医学工程学院 生命科学与技术学院_硕士生 信息科学与技术学院_硕士生 生物医学工程学院_PI研究组_赖晓春组 生物医学工程学院_博士生 |
作者单位 | School of Biomedical Engineering, ShanghaiTech University, Shanghai, China |
第一作者单位 | 生物医学工程学院 |
第一作者的第一单位 | 生物医学工程学院 |
推荐引用方式 GB/T 7714 | X. Yu,W. Qin,T. Zhong,et al. Physics-Guided Deep Learning Model for Photon-Counting CT Material Decomposition[C],2023. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[X. Yu]的文章 |
[W. Qin]的文章 |
[T. Zhong]的文章 |
百度学术 |
百度学术中相似的文章 |
[X. Yu]的文章 |
[W. Qin]的文章 |
[T. Zhong]的文章 |
必应学术 |
必应学术中相似的文章 |
[X. Yu]的文章 |
[W. Qin]的文章 |
[T. Zhong]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。