An Empirical Study on Google Research Football Multi-agent Scenarios
2024
发表期刊MACHINE INTELLIGENCE RESEARCH
ISSN2731-538X
EISSN2731-5398
卷号21期号:3页码:549-570
DOI10.1007/s11633-023-1426-8
摘要Few multi-agent reinforcement learning (MARL) researches on Google research football (GRF) focus on the 11-vs-11 multi-agent full-game scenario and to the best of our knowledge, no open benchmark on this scenario has been released to the public. In this work, we fill the gap by providing a population-based MARL training pipeline and hyperparameter settings on multi-agent football scenario that outperforms the bot with difficulty 1.0 from scratch within 2 million steps. Our experiments serve as a reference for the expected performance of independent proximal policy optimization (IPPO), a state-of-the-art multi-agent reinforcement learning algorithm where each agent tries to maximize its own policy independently across various training configurations. Meanwhile, we release our training framework Light-MALib which extends the MALib codebase by distributed and asynchronous implementation with additional analytical tools for football games. Finally, we provide guidance for building strong football AI with population-based training and release diverse pretrained policies for benchmarking. The goal is to provide the community with a head start for whoever experiment their works on GRF and a simple-to-use population-based training framework for further improving their agents through self-play. The implementation is available at https://github.com/Shanghai-Digital-Brain-Laboratory/DB-Football . © 2024, Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature.
关键词Fertilizers HTTP Learning algorithms Learning systems Multi agent systems Reinforcement learning Distributed reinforcement learning system Empirical studies Google+ Multi agent Multi-agent reinforcement learning Population-based training Reinforcement learning systems Reward shaping Training framework
URL查看原文
收录类别EI
语种英语
出版者Chinese Academy of Sciences
EI入藏号20240315385682
EI主题词Game theory
EI分类号723.4 Artificial Intelligence ; 723.4.2 Machine Learning ; 804 Chemical Products Generally ; 821.2 Agricultural Chemicals ; 922.1 Probability Theory
原始文献类型Article in Press
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/349763
专题创意与艺术学院_PI研究组(P)_田政组
通讯作者Tian, Zheng; Zhang, Weinan
作者单位
1.Institute of Automation, Chinese Academy of Sciences, Beijing; 100190, China
2.Digital Brain Lab, Shanghai; 200001, China
3.ShanghaiTech University, Shanghai; 200001, China
4.Huawei Cloud, Guiyang; 550003, China
5.Shanghai Jiao Tong University, Shanghai; 200001, China
6.University College London, London; WC1E 6PT, United Kingdom
通讯作者单位上海科技大学
推荐引用方式
GB/T 7714
Song, Yan,Jiang, He,Tian, Zheng,et al. An Empirical Study on Google Research Football Multi-agent Scenarios[J]. MACHINE INTELLIGENCE RESEARCH,2024,21(3):549-570.
APA Song, Yan.,Jiang, He.,Tian, Zheng.,Zhang, Haifeng.,Zhang, Yingping.,...&Wang, Jun.(2024).An Empirical Study on Google Research Football Multi-agent Scenarios.MACHINE INTELLIGENCE RESEARCH,21(3),549-570.
MLA Song, Yan,et al."An Empirical Study on Google Research Football Multi-agent Scenarios".MACHINE INTELLIGENCE RESEARCH 21.3(2024):549-570.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Song, Yan]的文章
[Jiang, He]的文章
[Tian, Zheng]的文章
百度学术
百度学术中相似的文章
[Song, Yan]的文章
[Jiang, He]的文章
[Tian, Zheng]的文章
必应学术
必应学术中相似的文章
[Song, Yan]的文章
[Jiang, He]的文章
[Tian, Zheng]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1007@s11633-023-1426-8.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。