ShanghaiTech University Knowledge Management System
An Empirical Study on Google Research Football Multi-agent Scenarios | |
2024 | |
发表期刊 | MACHINE INTELLIGENCE RESEARCH
![]() |
ISSN | 2731-538X |
EISSN | 2731-5398 |
卷号 | 21期号:3页码:549-570 |
DOI | 10.1007/s11633-023-1426-8 |
摘要 | Few multi-agent reinforcement learning (MARL) researches on Google research football (GRF) focus on the 11-vs-11 multi-agent full-game scenario and to the best of our knowledge, no open benchmark on this scenario has been released to the public. In this work, we fill the gap by providing a population-based MARL training pipeline and hyperparameter settings on multi-agent football scenario that outperforms the bot with difficulty 1.0 from scratch within 2 million steps. Our experiments serve as a reference for the expected performance of independent proximal policy optimization (IPPO), a state-of-the-art multi-agent reinforcement learning algorithm where each agent tries to maximize its own policy independently across various training configurations. Meanwhile, we release our training framework Light-MALib which extends the MALib codebase by distributed and asynchronous implementation with additional analytical tools for football games. Finally, we provide guidance for building strong football AI with population-based training and release diverse pretrained policies for benchmarking. The goal is to provide the community with a head start for whoever experiment their works on GRF and a simple-to-use population-based training framework for further improving their agents through self-play. The implementation is available at https://github.com/Shanghai-Digital-Brain-Laboratory/DB-Football . © 2024, Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature. |
关键词 | Fertilizers HTTP Learning algorithms Learning systems Multi agent systems Reinforcement learning Distributed reinforcement learning system Empirical studies Google+ Multi agent Multi-agent reinforcement learning Population-based training Reinforcement learning systems Reward shaping Training framework |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Chinese Academy of Sciences |
EI入藏号 | 20240315385682 |
EI主题词 | Game theory |
EI分类号 | 723.4 Artificial Intelligence ; 723.4.2 Machine Learning ; 804 Chemical Products Generally ; 821.2 Agricultural Chemicals ; 922.1 Probability Theory |
原始文献类型 | Article in Press |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/349763 |
专题 | 创意与艺术学院_PI研究组(P)_田政组 |
通讯作者 | Tian, Zheng; Zhang, Weinan |
作者单位 | 1.Institute of Automation, Chinese Academy of Sciences, Beijing; 100190, China 2.Digital Brain Lab, Shanghai; 200001, China 3.ShanghaiTech University, Shanghai; 200001, China 4.Huawei Cloud, Guiyang; 550003, China 5.Shanghai Jiao Tong University, Shanghai; 200001, China 6.University College London, London; WC1E 6PT, United Kingdom |
通讯作者单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Song, Yan,Jiang, He,Tian, Zheng,et al. An Empirical Study on Google Research Football Multi-agent Scenarios[J]. MACHINE INTELLIGENCE RESEARCH,2024,21(3):549-570. |
APA | Song, Yan.,Jiang, He.,Tian, Zheng.,Zhang, Haifeng.,Zhang, Yingping.,...&Wang, Jun.(2024).An Empirical Study on Google Research Football Multi-agent Scenarios.MACHINE INTELLIGENCE RESEARCH,21(3),549-570. |
MLA | Song, Yan,et al."An Empirical Study on Google Research Football Multi-agent Scenarios".MACHINE INTELLIGENCE RESEARCH 21.3(2024):549-570. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Song, Yan]的文章 |
[Jiang, He]的文章 |
[Tian, Zheng]的文章 |
百度学术 |
百度学术中相似的文章 |
[Song, Yan]的文章 |
[Jiang, He]的文章 |
[Tian, Zheng]的文章 |
必应学术 |
必应学术中相似的文章 |
[Song, Yan]的文章 |
[Jiang, He]的文章 |
[Tian, Zheng]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。