ShanghaiTech University Knowledge Management System
Ultrafast Acoustic Holography with Physics-Reinforced Self-Supervised Learning for Precise Robotic Manipulation | |
2023 | |
会议录名称 | IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS |
ISSN | 2153-0858 |
页码 | 2673-2678 |
发表状态 | 已发表 |
DOI | 10.1109/IROS55552.2023.10341483 |
摘要 | Ultrafast acoustic holography (AH) enabling dynamic contactless micro-nano robotic manipulation has recently attracted wide attention. As an advanced technique, AH encodes specific three-dimensional (3D) acoustic field on a two-dimensional (2D) hologram whereby realizing holographic reconstruction with high fidelity. However, current approaches face the limitation of encoding time, accuracy and flexibility, thus, leading to inapplicability for dynamic and precise robotic manipulation. Here, we develop an approach to overcome these issues. Its basic idea is to use a convolutional neural network trained in a self-supervised manner with iterative interaction with virtual physical environment. Energy conservation is incorporated to access the physical constrain during wave propagation. The experimental results demonstrate that the proposed method circumvents laborious annotated dataset preparation and boosts the reinforcement from physics model. By the validation and comparison on distinct acoustic fields with various patterns, the accuracy and real-time performance of the proposed method are confirmed supporting dynamic and precise robotic manipulation. © 2023 IEEE. |
关键词 | Acoustic fields Acoustic wave propagation Acoustic wave velocity Acoustic waves Convolution Encoding (symbols) Holograms Iterative methods Machine learning Reinforcement Robotics 'current Contact less Encoding time High-fidelity Holographic reconstruction Micro/nanorobotics Nanorobotic manipulations Robotic manipulation Two-dimensional Ultrafast acoustics |
会议名称 | 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023 |
会议地点 | Detroit, MI, United states |
会议日期 | October 1, 2023 - October 5, 2023 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20240315411809 |
EI主题词 | Dynamics |
EISSN | 2153-0866 |
EI分类号 | 716.1 Information Theory and Signal Processing ; 723.2 Data Processing and Image Processing ; 723.4 Artificial Intelligence ; 731.5 Robotics ; 743 Holography ; 751 Acoustics, Noise. Sound ; 751.1 Acoustic Waves ; 921.6 Numerical Methods ; 951 Materials Science |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/349513 |
专题 | 信息科学与技术学院 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_刘松组 |
通讯作者 | Su, Hu; Liu, Song |
作者单位 | 1.Institute of Automation, Chinese Academy of Sciences, Beijing; 100190, China 2.School of Information Science and Technology, ShanghaiTech University, Shanghai; 201210, China 3.Shanghai Engineering Research Center of Intelligent Vision and Imaging, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Lu, Qingyi,Zhong, Chengxi,Liu, Qing,et al. Ultrafast Acoustic Holography with Physics-Reinforced Self-Supervised Learning for Precise Robotic Manipulation[C]:Institute of Electrical and Electronics Engineers Inc.,2023:2673-2678. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。