Ultrafast Acoustic Holography with Physics-Reinforced Self-Supervised Learning for Precise Robotic Manipulation
2023
会议录名称IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS
ISSN2153-0858
页码2673-2678
发表状态已发表
DOI10.1109/IROS55552.2023.10341483
摘要

Ultrafast acoustic holography (AH) enabling dynamic contactless micro-nano robotic manipulation has recently attracted wide attention. As an advanced technique, AH encodes specific three-dimensional (3D) acoustic field on a two-dimensional (2D) hologram whereby realizing holographic reconstruction with high fidelity. However, current approaches face the limitation of encoding time, accuracy and flexibility, thus, leading to inapplicability for dynamic and precise robotic manipulation. Here, we develop an approach to overcome these issues. Its basic idea is to use a convolutional neural network trained in a self-supervised manner with iterative interaction with virtual physical environment. Energy conservation is incorporated to access the physical constrain during wave propagation. The experimental results demonstrate that the proposed method circumvents laborious annotated dataset preparation and boosts the reinforcement from physics model. By the validation and comparison on distinct acoustic fields with various patterns, the accuracy and real-time performance of the proposed method are confirmed supporting dynamic and precise robotic manipulation. © 2023 IEEE.

关键词Acoustic fields Acoustic wave propagation Acoustic wave velocity Acoustic waves Convolution Encoding (symbols) Holograms Iterative methods Machine learning Reinforcement Robotics 'current Contact less Encoding time High-fidelity Holographic reconstruction Micro/nanorobotics Nanorobotic manipulations Robotic manipulation Two-dimensional Ultrafast acoustics
会议名称2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023
会议地点Detroit, MI, United states
会议日期October 1, 2023 - October 5, 2023
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20240315411809
EI主题词Dynamics
EISSN2153-0866
EI分类号716.1 Information Theory and Signal Processing ; 723.2 Data Processing and Image Processing ; 723.4 Artificial Intelligence ; 731.5 Robotics ; 743 Holography ; 751 Acoustics, Noise. Sound ; 751.1 Acoustic Waves ; 921.6 Numerical Methods ; 951 Materials Science
原始文献类型Conference article (CA)
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/349513
专题信息科学与技术学院
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_刘松组
通讯作者Su, Hu; Liu, Song
作者单位
1.Institute of Automation, Chinese Academy of Sciences, Beijing; 100190, China
2.School of Information Science and Technology, ShanghaiTech University, Shanghai; 201210, China
3.Shanghai Engineering Research Center of Intelligent Vision and Imaging, Shanghai, China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Lu, Qingyi,Zhong, Chengxi,Liu, Qing,et al. Ultrafast Acoustic Holography with Physics-Reinforced Self-Supervised Learning for Precise Robotic Manipulation[C]:Institute of Electrical and Electronics Engineers Inc.,2023:2673-2678.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Lu, Qingyi]的文章
[Zhong, Chengxi]的文章
[Liu, Qing]的文章
百度学术
百度学术中相似的文章
[Lu, Qingyi]的文章
[Zhong, Chengxi]的文章
[Liu, Qing]的文章
必应学术
必应学术中相似的文章
[Lu, Qingyi]的文章
[Zhong, Chengxi]的文章
[Liu, Qing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。