Exploring Learning-Based Control Policy for Fish-Like Robots in Altered Background Flows
2023-10-05
会议录名称2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS)
ISSN2153-0858
页码2338-2345
发表状态已发表
DOI10.1109/IROS55552.2023.10342394
摘要The study of motion control for the fish-like robots in complex fluid fields is of great importance in improving the performance of underwater vehicles, due to its strong maneuverability, propulsion efficiency, and deceptive visual appearance. In this article, a novel learning-based control framework is first proposed to autonomously explore efficient control policies that are capable of performing motion control tasks in non-quiescent and unknown background flows. First, we utilize a high-fidelity simulation system, named FishGym, to generate various uniform flows. Next, a DRL-based algorithm is incorporated with the FishGym to train the fish-like robot to control its motion to optimally complete a delicately designed task (Approaching Target and Stay) in both quiescent and uniform flow. Then, the obtained control policy together with an online estimator is directly applied to a Path-Following Task. The proposed framework well balances the simulation accuracy and the computational efficiency, which is of crucial importance for effective coupling with the learning algorithm. The simulation results indicate that, via the proposed learning framework, the robot successfully acquired a swimming strategy that can be used to adapt to different background flows and tasks. Furthermore, we also observe some adaptation behavior of the robot, such as rheotaxis, that is similar to the fish in nature, which gains us more insight into the mechanism underlying the adaptation behavior of fish in a complex environment. © 2023 IEEE.
关键词Visualization Simulation Propulsion Fish Behavioral sciences Task analysis Motion control
会议名称2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023
会议地点Detroit, MI, USA
会议日期1-5 Oct. 2023
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20240315412071
EI主题词Motion control
EISSN2153-0866
EI分类号461.4 Ergonomics and Human Factors Engineering ; 723.4.2 Machine Learning ; 731.3 Specific Variables Control ; 731.5 Robotics ; 971 Social Sciences
原始文献类型Conference article (CA)
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/349504
专题信息科学与技术学院
信息科学与技术学院_PI研究组_何旭明组
信息科学与技术学院_PI研究组_刘晓培组
信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_汪阳组
作者单位
School of Information Science and Technology, ShanghaiTech University, Shanghai, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Lin, Xiaozhu,Song, Wenbin,Liu, Xiaopei,et al. Exploring Learning-Based Control Policy for Fish-Like Robots in Altered Background Flows[C]:Institute of Electrical and Electronics Engineers Inc.,2023:2338-2345.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Lin, Xiaozhu]的文章
[Song, Wenbin]的文章
[Liu, Xiaopei]的文章
百度学术
百度学术中相似的文章
[Lin, Xiaozhu]的文章
[Song, Wenbin]的文章
[Liu, Xiaopei]的文章
必应学术
必应学术中相似的文章
[Lin, Xiaozhu]的文章
[Song, Wenbin]的文章
[Liu, Xiaopei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。