Bridging Language and Geometric Primitives for Zero-shot Point Cloud Segmentation
2023-10-26
会议录名称MM 2023 - PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA
页码5380-5388
发表状态已发表
DOI10.1145/3581783.3612409
摘要

We investigate transductive zero-shot point cloud semantic segmentation, where the network is trained on seen objects and able to segment unseen objects. The 3D geometric elements are essential cues to imply a novel 3D object type. However, previous methods neglect the fine-grained relationship between the language and the 3D geometric elements. To this end, we propose a novel framework to learn the geometric primitives shared in seen and unseen categories' objects and employ a fine-grained alignment between language and the learned geometric primitives. Therefore, guided by language, the network recognizes the novel objects represented with geometric primitives. Specifically, we formulate a novel point visual representation, the similarity vector of the point's feature to the learnable prototypes, where the prototypes automatically encode geometric primitives via back-propagation. Besides, we propose a novel Unknown-aware InfoNCE Loss to fine-grained align the visual representation with language. Extensive experiments show that our method significantly outperforms other state-of-the-art methods in the harmonic mean-intersection-over-union (hIoU), with the improvement of 17.8%, 30.4%, 9.2% and 7.9% on S3DIS, ScanNet, SemanticKITTI and nuScenes datasets, respectively. Codes are available1 https://github.com/runnanchen/Zero-Shot-Point-Cloud-Segmentation. © 2023 ACM.

会议录编者/会议主办者ACM SIGMM
关键词Geometry Semantic Segmentation Semantics Visual languages Zero-shot learning 3D object Fine grained Fine-grained relationships Geometric elements Geometric primitives Learn+ Point cloud segmentation Point-clouds Semantic segmentation Visual representations
会议名称31st ACM International Conference on Multimedia, MM 2023
会议地点Ottawa, ON, Canada
会议日期October 29, 2023 - November 3, 2023
收录类别EI
语种英语
出版者Association for Computing Machinery, Inc
EI入藏号20235015224744
EI主题词Backpropagation
EI分类号723.1.1 Computer Programming Languages ; 723.4 Artificial Intelligence ; 921 Mathematics
原始文献类型Conference article (CA)
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348711
专题信息科学与技术学院_PI研究组_马月昕
作者单位
1.The University of Hong Kong, Hong Kong
2.The Chinese University of Hong Kong, Hong Kong
3.Inceptio, United States
4.ShanghaiTech University, China
5.Texas A&m University, United States
推荐引用方式
GB/T 7714
Chen, Runnan,Zhu, Xinge,Chen, Nenglun,et al. Bridging Language and Geometric Primitives for Zero-shot Point Cloud Segmentation[C]//ACM SIGMM:Association for Computing Machinery, Inc,2023:5380-5388.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chen, Runnan]的文章
[Zhu, Xinge]的文章
[Chen, Nenglun]的文章
百度学术
百度学术中相似的文章
[Chen, Runnan]的文章
[Zhu, Xinge]的文章
[Chen, Nenglun]的文章
必应学术
必应学术中相似的文章
[Chen, Runnan]的文章
[Zhu, Xinge]的文章
[Chen, Nenglun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。