ShanghaiTech University Knowledge Management System
Coarse-to-fine registration and time-intensity curves constraint for liver DCE-MRI synthesis | |
2024-01 | |
发表期刊 | COMPUTERIZED MEDICAL IMAGING AND GRAPHICS (IF:5.4[JCR-2023],6.1[5-Year]) |
ISSN | 0895-6111 |
EISSN | 1879-0771 |
卷号 | 111 |
发表状态 | 已发表 |
DOI | 10.1016/j.compmedimag.2023.102319 |
摘要 | Image registration plays a crucial role in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), used as a fundamental step for the subsequent diagnosis of benign and malignant tumors. However, the registration process encounters significant challenges due to the substantial intensity changes observed among different time points, resulting from the injection of contrast agents. Furthermore, previous studies have often overlooked the alignment of small structures, such as tumors and vessels. In this work, we propose a novel DCE-MRI registration framework that can effectively align the DCE-MRI time series. Specifically, our DCE-MRI registration framework consists of two steps, i.e., a de-enhancement synthesis step and a coarse-to-fine registration step. In the de-enhancement synthesis step, a disentanglement network separates DCE-MRI images into a content component representing the anatomical structures and a style component indicating the presence or absence of contrast agents. This step generates synthetic images where the contrast agents are removed from the original images, alleviating the negative effects of intensity changes on the subsequent registration process. In the registration step, we utilize a coarse registration network followed by a refined registration network. These two networks facilitate the estimation of both the coarse and refined displacement vector fields (DVFs) in a pairwise and groupwise registration manner, respectively. In addition, to enhance the alignment accuracy for small structures, a voxel-wise constraint is further conducted by assessing the smoothness of the time-intensity curves (TICs). Experimental results on liver DCE-MRI demonstrate that our proposed method outperforms state-of-the-art approaches, offering more robust and accurate alignment results. © 2023 Elsevier Ltd |
关键词 | Diagnosis Image enhancement Image registration Magnetic resonance imaging Tumors Coarse to fine Contrast agent Dynamic contrast-enhanced magnetic resonance imaging Image translation Image-to-image translation Intensity change Registration Registration process Smoothness of time-intensity curve Time-intensity curves |
URL | 查看原文 |
收录类别 | EI ; SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China["62131015","62250710165","U23A20295","12126603","81974275","62276122"] ; Science and Technology Commission of Shanghai Municipality (STCSM)[21010502600] ; Key Research and Development Program of Guangdong Province, China[2021B0101420006] ; Guangzhou Science and Technology Project[202102020297] |
WOS研究方向 | Engineering ; Radiology, Nuclear Medicine & Medical Imaging |
WOS类目 | Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:001146647800001 |
出版者 | Elsevier Ltd |
EI入藏号 | 20240115321035 |
EI主题词 | Alignment |
EI分类号 | 461.2 Biological Materials and Tissue Engineering ; 461.6 Medicine and Pharmacology ; 601.1 Mechanical Devices ; 701.2 Magnetism: Basic Concepts and Phenomena ; 723.2 Data Processing and Image Processing ; 746 Imaging Techniques |
原始文献类型 | Journal article (JA) |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348632 |
专题 | 生物医学工程学院 物质科学与技术学院_特聘教授组_孙予罕组 生命科学与技术学院_博士生 信息科学与技术学院_博士生 生物医学工程学院_PI研究组_沈定刚组 |
通讯作者 | Feng, Qianjin; Shen, Dinggang |
作者单位 | 1.Southern Med Univ, Sch Biomed Engn, Guangzhou, Peoples R China 2.Shanghai Tech Univ, Sch Biomed Engn, Shanghai, Peoples R China 3.Shanghai Tech Univ, State Key Lab Adv Med Mat & Devices, Shanghai, Peoples R China 4.Shanghai United Imaging Intelligence Co Ltd, Dept Res & Dev, Shanghai, Peoples R China 5.Shanghai Clin Res & Trial Ctr, Shanghai, Peoples R China |
第一作者单位 | 生物医学工程学院; 上海科技大学 |
通讯作者单位 | 生物医学工程学院; 上海科技大学 |
推荐引用方式 GB/T 7714 | Sun, Yuhang,Gu, Yuning,Shi, Feng,et al. Coarse-to-fine registration and time-intensity curves constraint for liver DCE-MRI synthesis[J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS,2024,111. |
APA | Sun, Yuhang.,Gu, Yuning.,Shi, Feng.,Liu, Jiameng.,Li, Guoqiang.,...&Shen, Dinggang.(2024).Coarse-to-fine registration and time-intensity curves constraint for liver DCE-MRI synthesis.COMPUTERIZED MEDICAL IMAGING AND GRAPHICS,111. |
MLA | Sun, Yuhang,et al."Coarse-to-fine registration and time-intensity curves constraint for liver DCE-MRI synthesis".COMPUTERIZED MEDICAL IMAGING AND GRAPHICS 111(2024). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。