ShanghaiTech University Knowledge Management System
Real-time acoustic holography with physics-reinforced contrastive learning for acoustic field reconstruction | |
2024-01-07 | |
发表期刊 | JOURNAL OF APPLIED PHYSICS |
ISSN | 0021-8979 |
EISSN | 1089-7550 |
卷号 | 135期号:1 |
发表状态 | 已发表 |
DOI | 10.1063/5.0174978 |
摘要 | Acoustic holography (AH) provides a promising technique for arbitrary acoustic field reconstruction, supporting many applications like robotic micro-nano manipulation, neuromodulation, volumetric imaging, and virtual reality. In AH, three-dimensional (3D) acoustic fields quantified with complex-valued acoustic pressures are reconstructed by virtue of two-dimensional (2D) acoustic holograms. Phase-only hologram (POH) is recently regarded as an energy-efficient way for AH, which is typically implemented by a dynamically programmable phased array of transducers (PATs). As a result, spatiotemporal precise acoustic field reconstruction is enabled by precise, dynamic, and individual actuation of PAT. Thus, 2D POH is required per arbitrary acoustic fields, which can be viewed as a physical inverse problem. However, solving the aforementioned physical inverse problem in numerical manners poses challenges due to its non-linear, high-dimensional, and complex coupling natures. The existing iterative algorithms like the iterative angular spectrum approach (IASA) and iterative backpropagation (IB) still suffer from speed-accuracy trade-offs. Hence, this paper explores a novel physics-iterative-reinforced deep learning method, in which frequency-argument contrastive learning is proposed facilitated by the inherent physical nature of AH, and the energy conservation law is under consideration. The experimental results demonstrate the effectiveness of the proposed method for acoustic field reconstruction, highlighting its significant potential in the domain of acoustics, and pushing forward the combination of physics into deep learning. © 2024 Author(s). |
关键词 | Deep learning Economic and social effects Energy efficiency Holograms Inverse problems Iterative methods Learning systems Spectrum analysis Virtual reality Acoustic field reconstruction Acoustic pressures Complex-valued Micro-nano manipulation Neuromodulation Phase-only Phased-arrays Real- time Two-dimensional Volumetric Imaging |
URL | 查看原文 |
收录类别 | EI ; SCI |
语种 | 英语 |
WOS研究方向 | Physics |
WOS类目 | Physics, Applied |
WOS记录号 | WOS:001206623100006 |
出版者 | American Institute of Physics Inc. |
EI入藏号 | 20240215358129 |
EI主题词 | Acoustic fields |
EI分类号 | 461.4 Ergonomics and Human Factors Engineering ; 525.2 Energy Conservation ; 723 Computer Software, Data Handling and Applications ; 743 Holography ; 751 Acoustics, Noise. Sound ; 921.6 Numerical Methods ; 971 Social Sciences |
原始文献类型 | Journal article (JA) |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348622 |
专题 | 信息科学与技术学院 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_刘松组 |
通讯作者 | Su, Hu; Liu, Song |
作者单位 | 1.School of Information Science and Technology, Shanghaitech University, Shanghai; 201210, China 2.Institute of Automation, Chinese Academy of Science, Beijing; 100190, China 3.Shanghai Engineering Research Center of Intelligent Vision and Imaging, Shanghai; 201210, China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Zhong, Chengxi,Lu, Qingyi,Li, Teng,et al. Real-time acoustic holography with physics-reinforced contrastive learning for acoustic field reconstruction[J]. JOURNAL OF APPLIED PHYSICS,2024,135(1). |
APA | Zhong, Chengxi,Lu, Qingyi,Li, Teng,Su, Hu,&Liu, Song.(2024).Real-time acoustic holography with physics-reinforced contrastive learning for acoustic field reconstruction.JOURNAL OF APPLIED PHYSICS,135(1). |
MLA | Zhong, Chengxi,et al."Real-time acoustic holography with physics-reinforced contrastive learning for acoustic field reconstruction".JOURNAL OF APPLIED PHYSICS 135.1(2024). |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。