Real-time acoustic holography with physics-reinforced contrastive learning for acoustic field reconstruction
2024-01-07
发表期刊JOURNAL OF APPLIED PHYSICS
ISSN0021-8979
EISSN1089-7550
卷号135期号:1
发表状态已发表
DOI10.1063/5.0174978
摘要Acoustic holography (AH) provides a promising technique for arbitrary acoustic field reconstruction, supporting many applications like robotic micro-nano manipulation, neuromodulation, volumetric imaging, and virtual reality. In AH, three-dimensional (3D) acoustic fields quantified with complex-valued acoustic pressures are reconstructed by virtue of two-dimensional (2D) acoustic holograms. Phase-only hologram (POH) is recently regarded as an energy-efficient way for AH, which is typically implemented by a dynamically programmable phased array of transducers (PATs). As a result, spatiotemporal precise acoustic field reconstruction is enabled by precise, dynamic, and individual actuation of PAT. Thus, 2D POH is required per arbitrary acoustic fields, which can be viewed as a physical inverse problem. However, solving the aforementioned physical inverse problem in numerical manners poses challenges due to its non-linear, high-dimensional, and complex coupling natures. The existing iterative algorithms like the iterative angular spectrum approach (IASA) and iterative backpropagation (IB) still suffer from speed-accuracy trade-offs. Hence, this paper explores a novel physics-iterative-reinforced deep learning method, in which frequency-argument contrastive learning is proposed facilitated by the inherent physical nature of AH, and the energy conservation law is under consideration. The experimental results demonstrate the effectiveness of the proposed method for acoustic field reconstruction, highlighting its significant potential in the domain of acoustics, and pushing forward the combination of physics into deep learning. © 2024 Author(s).
关键词Deep learning Economic and social effects Energy efficiency Holograms Inverse problems Iterative methods Learning systems Spectrum analysis Virtual reality Acoustic field reconstruction Acoustic pressures Complex-valued Micro-nano manipulation Neuromodulation Phase-only Phased-arrays Real- time Two-dimensional Volumetric Imaging
URL查看原文
收录类别EI ; SCI
语种英语
WOS研究方向Physics
WOS类目Physics, Applied
WOS记录号WOS:001206623100006
出版者American Institute of Physics Inc.
EI入藏号20240215358129
EI主题词Acoustic fields
EI分类号461.4 Ergonomics and Human Factors Engineering ; 525.2 Energy Conservation ; 723 Computer Software, Data Handling and Applications ; 743 Holography ; 751 Acoustics, Noise. Sound ; 921.6 Numerical Methods ; 971 Social Sciences
原始文献类型Journal article (JA)
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348622
专题信息科学与技术学院
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_刘松组
通讯作者Su, Hu; Liu, Song
作者单位
1.School of Information Science and Technology, Shanghaitech University, Shanghai; 201210, China
2.Institute of Automation, Chinese Academy of Science, Beijing; 100190, China
3.Shanghai Engineering Research Center of Intelligent Vision and Imaging, Shanghai; 201210, China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Zhong, Chengxi,Lu, Qingyi,Li, Teng,et al. Real-time acoustic holography with physics-reinforced contrastive learning for acoustic field reconstruction[J]. JOURNAL OF APPLIED PHYSICS,2024,135(1).
APA Zhong, Chengxi,Lu, Qingyi,Li, Teng,Su, Hu,&Liu, Song.(2024).Real-time acoustic holography with physics-reinforced contrastive learning for acoustic field reconstruction.JOURNAL OF APPLIED PHYSICS,135(1).
MLA Zhong, Chengxi,et al."Real-time acoustic holography with physics-reinforced contrastive learning for acoustic field reconstruction".JOURNAL OF APPLIED PHYSICS 135.1(2024).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhong, Chengxi]的文章
[Lu, Qingyi]的文章
[Li, Teng]的文章
百度学术
百度学术中相似的文章
[Zhong, Chengxi]的文章
[Lu, Qingyi]的文章
[Li, Teng]的文章
必应学术
必应学术中相似的文章
[Zhong, Chengxi]的文章
[Lu, Qingyi]的文章
[Li, Teng]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1063@5.0174978.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。